

Investor Day CMM Product Division

15th May 2014

Presented by Dave Wallace

Customer needs

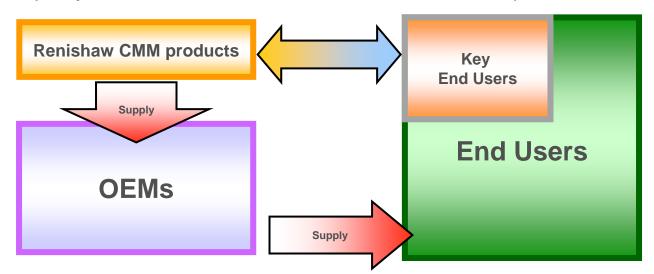
Coordinate Measuring Machines (CMMs)

- Are devices for measuring the physical geometry of engineering components.
- Are mostly automated by computer control and drives.
- Measurements are achieved by a probe attached to the last axis of the machine "telling" the computer when it touches the part
 - the invention of which (by Sir David McMurtry) lead to the founding of Renishaw.
- Accuracy is typically a few microns (= a few 0.001 mm) over the working volume of the system.

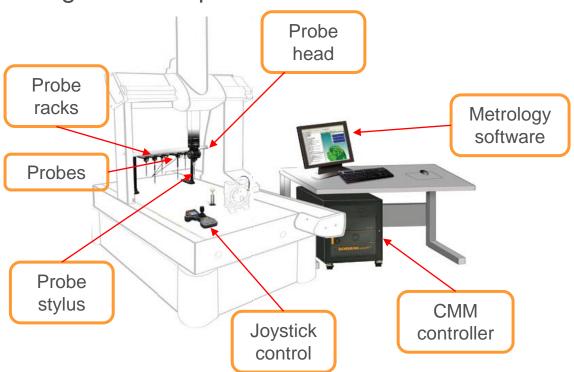
Customer needs – CMM key applications

- Aerospace: engines, landing gear, hydraulic valves etc.
 - Key drivers: fuel efficiency, safety, throughput due to increase in orders

- Automotive: engines, drive-train, body-in-white
 - Key drivers: product life expectancy, safety, throughput, fuel efficiency

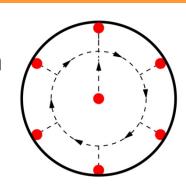

- Power generation: housings, gears
 - Key drivers: product life, efficiency (accuracy), "going green"

Customer needs

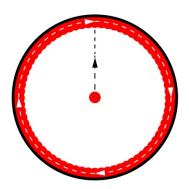

- Renishaw design and manufactures CMM products sold to:
 - OEMs that make CMMs
 - End users that use the CMMs
 - Third party distributors and retrofitters who sell the products on

Engineering solutions

Renishaw's range of CMM products



Engineering Solutions – probing


Touch-trigger probing systems

• Touch-trigger probes measure discrete points, making them ideal for inspection of 3-dimensional geometric parts where form is either assumed or not critical – they do not say *how much* they are deflected, but merely that they are deflected.

Scanning probing systems

 Scanning probes maintain contact with the part whilst moving to acquire several hundred surface points each second, enabling measurement of form as well as size and position – they say how much they are deflected hence allowing scanning.

Engineering Solutions – motorised heads

 For 30+ years Renishaw's motorised probe heads PH9 and PH10 have increased throughput and utilisation of CMMs by adding CNC controlled <u>repeatable</u> probe re-orientation.

 In last 10 years Renishaw has responded to user demands for even greater throughput, higher data collection rates and more inspection capability with 5-axis probing systems thereby "letting the head do the work"....

Successful outcomes – throughput examples

 Manufacturer of machined castings for automotive industry worldwide: retrofit of 7 CMMs with 5-axis technology (PH20 and REVO), Renishaw controllers and Renishaw measurement software – new capabilities and throughput advantages

- US auto manufacturer with long standing relationship with a Renishaw competitor: throughput is key (seconds count)
 - Cell 1: competitor product 40 mins; REVO 26 mins
 - Cell 2: competitor product 50 mins; REVO 23 mins 39 secs

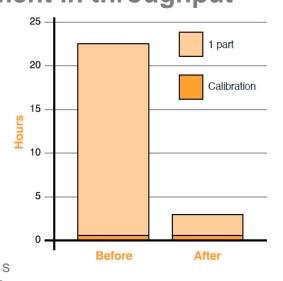
The customer is very happy!

Successful outcomes – throughput examples

Aerospace: Engine blisk

92% improvement in throughput

Measurements


9 sectional scans, 8 longitudal scans 2 root profile scans per blade, 1 scan of annulus profile

Before

3-axis scanning at 10 mm/sec Measurement time for 1 blade = 46 m Measurement for all blades = 22 h 11 m

After

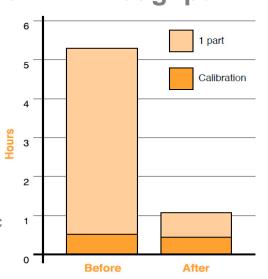
REVO® at 200 mm/sec and 50 mm/sec Measurement time for 1 blade = 4 m 30 s Measurement for all blades = 2 hours 10 m

Successful outcomes – throughput examples

Automotive: Cylinder head

690% improvement in throughput

Measurements


12 valve seats
12 valve guides

Before

3-axis scanning at 15 mm/sec Measurement time = 29 m 13 s

After

REVO at 400 mm/sec and 50 mm/sec Measurement time = 3 m 42 s

