

TONiC[™] T101x RSLM/RELM high accuracy linear encoder system

Contents

Product compliance	1
Storage and handling	2
TONiC readhead installation drawing	3
Measuring lengths	4
Adhesive mounting installation drawing	5
Adhesive mounting installation	6
Clip/clamp mounting installation drawing	7
Clip/clamp mounting installation	8
TONIC interface drawing	9
TONiC quick-start guide	9
System connection	10
Readhead mounting and alignment	11
Reference mark selector and limit magnet installation	11
System calibration	12
Output signals	13
Speed	13
Electrical connections	14
Output specifications	15
General specifications	16

Product compliance

CE

Renishaw plc declares that TONiC complies with the applicable standards and regulations. A copy of the EC Declaration of Conformity is available on request.

FCC compliance

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The user is cautioned that any changes or modifications not expressly approved by Renishaw plc or authorised representative could void the user's authority to operate the equipment.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. NOTE: This unit was tested with shielded cables on the peripheral devices. Shielded cables must be used with the unit to ensure compliance.

RoHS compliance

Compliant with EC directive 2011/65/EU (RoHS)

Patents

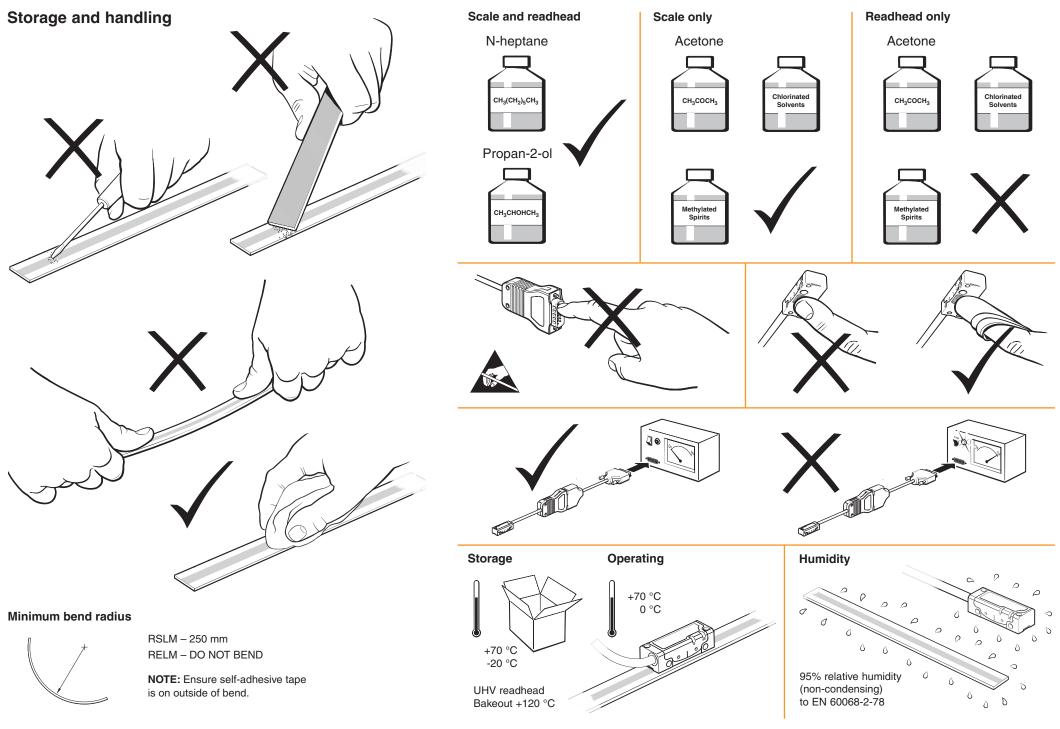
Features of Renishaw's encoder systems and similar products are the subjects of the following patents and patent applications:

EP1173731	US6775008B2	JP4750998	CNCN100543424C	US7659992
EP1766334	JP4932706	CNCN100507454C	US7550710	JP5386081
EP1766335	CNCN101300463B	EP1946048	US7624513B2	JP5017275
CNCN101310165B	US7839296	EP1957943	CN1314511	EP1469969
JP5002559	US8987633	US8466943		

Further information

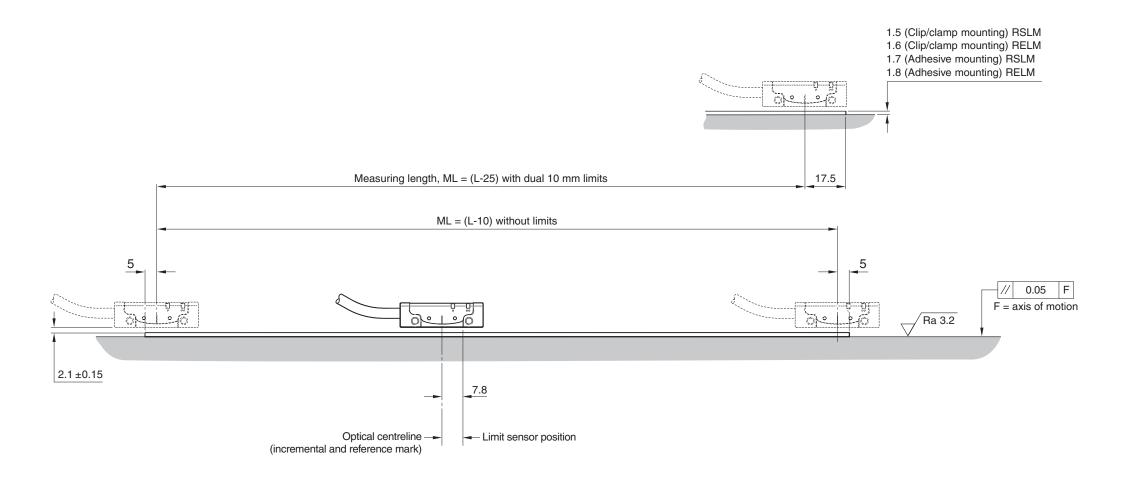
Further information relating to the TONiC encoder range can be found in the TONiC system Data sheet (L-9517-9337). This can be downloaded from our website www.renishaw.com/encoder and is also available from your local representative. This document may not be copied or reproduced in whole or in part, or transferred to any other media or language, by any means without the written prior permission of Renishaw. The publication of material within this document does not imply freedom from the patent rights of Renishaw plc.

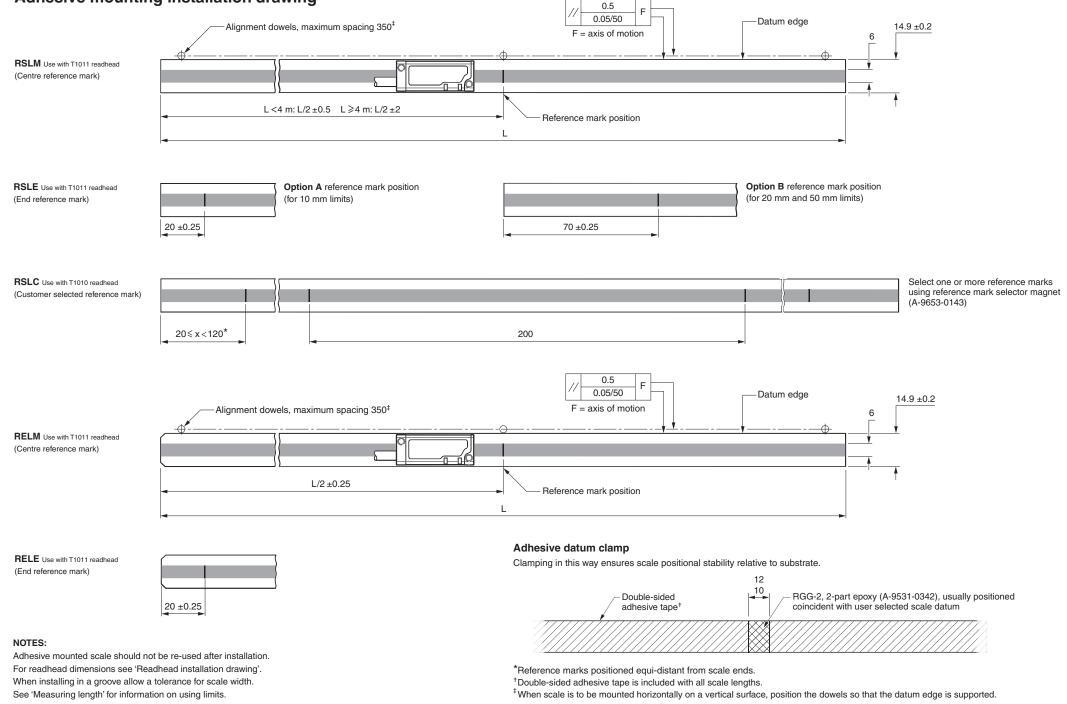
Disclaimer

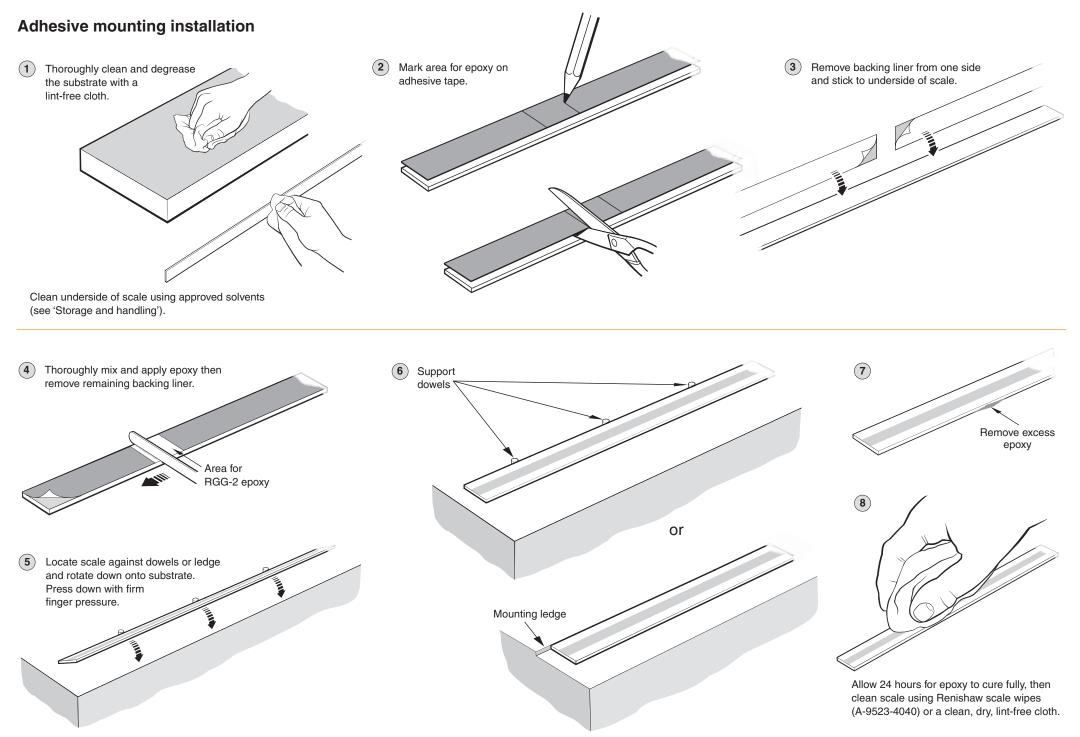

RENISHAW HAS MADE CONSIDERABLE EFFORTS TO ENSURE THE CONTENT OF THIS DOCUMENT IS CORRECT AT THE DATE OF PUBLICATION BUT MAKES NO WARRANTIES OR REPRESENTATIONS REGARDING THE CONTENT. RENISHAW EXCLUDES LIABILITY, HOWSOEVER ARISING, FOR ANY INACCURACIES IN THIS DOCUMENT.

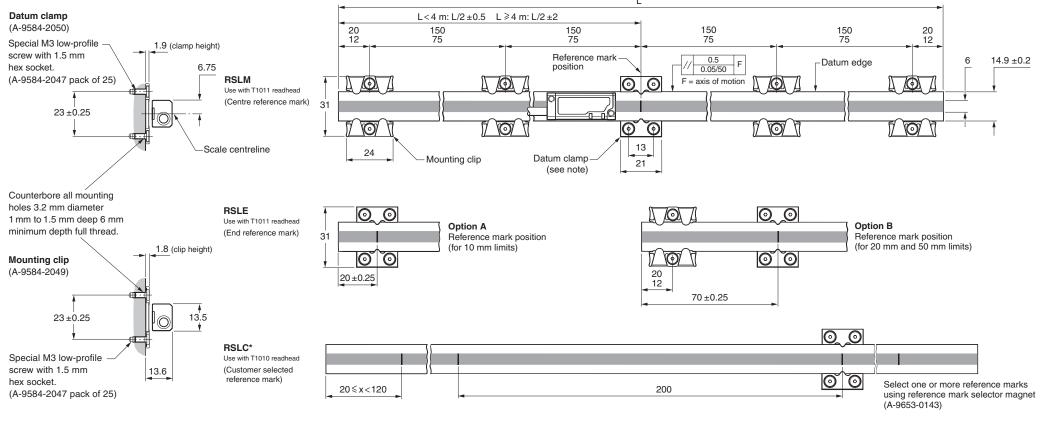
The packaging of our products contains the following materials and can be recycled.

Packaging Component	Material	ISO 11469	Recycling Guidance
Outer box	Cardboard	Not applicable	Recyclable
	Polypropylene	PP	Recyclable
Inserts	Low Density Polyethylene Foam	LDPE	Recyclable
	Cardboard	Not applicable	Recyclable
Bags High Density Polyethylene B		HDPE	Recyclable
	Metalised Polyethylene	PE	Recyclable


The use of this symbol on Renishaw products and/or accompanying documentation indicates that the product should not be mixed with general household waste upon disposal. It is the responsibility of the end user to dispose of this product at a designated collection point for waste electrical and electronic equipment (WEEE) to enable reuse or recycling. Correct disposal of this product will help to save valuable resources and prevent potential negative effects on the environment. For more information, please contact your local waste disposal service or Renishaw distributor.


TONiC T101x readhead installation drawing


*Extent of mounting faces. [†]UHV cable diameter 3.0 approx. [‡]Dynamic bend radius not applicable for UHV cables. **NOTE:** External magnetic fields greater than 6 mT, in the vicinity of the readhead, may cause false activation of the limit sensor.


Adhesive mounting installation drawing

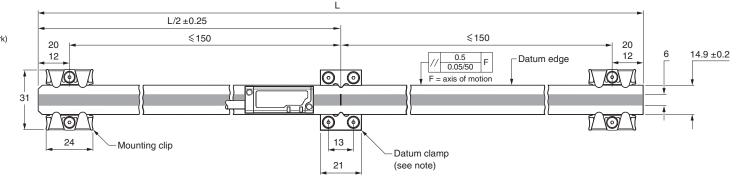
TONiC RSLM/RELM installation guide

Clip/clamp mounting installation drawing

RELM Use with T1011 readhead (Centre reference mark)

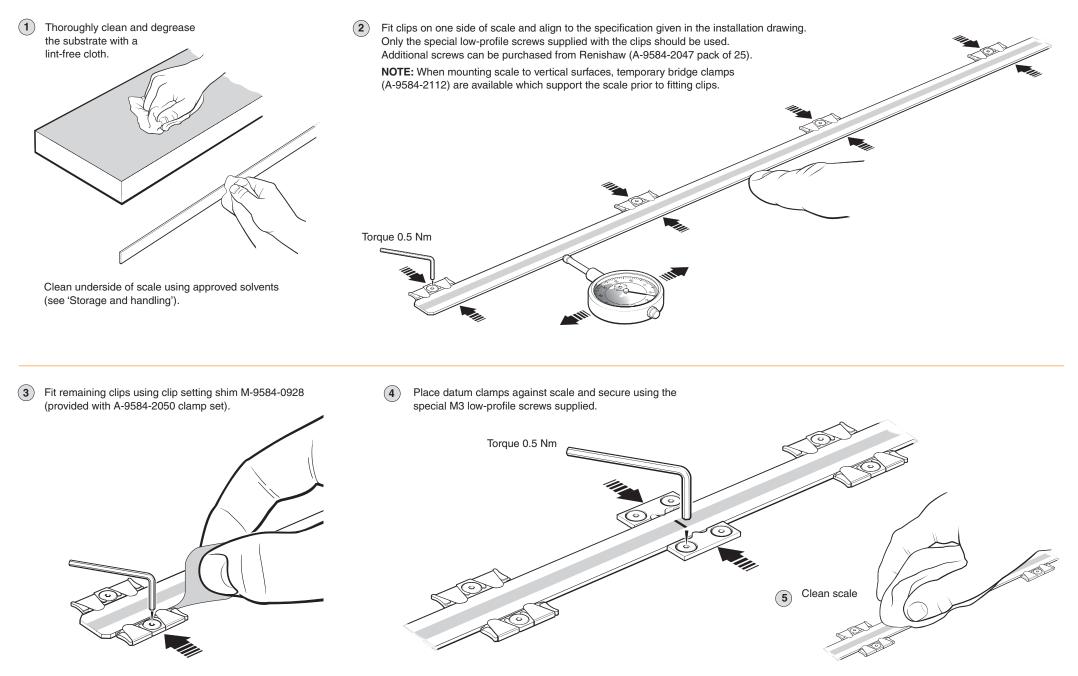
RELE

NOTES:

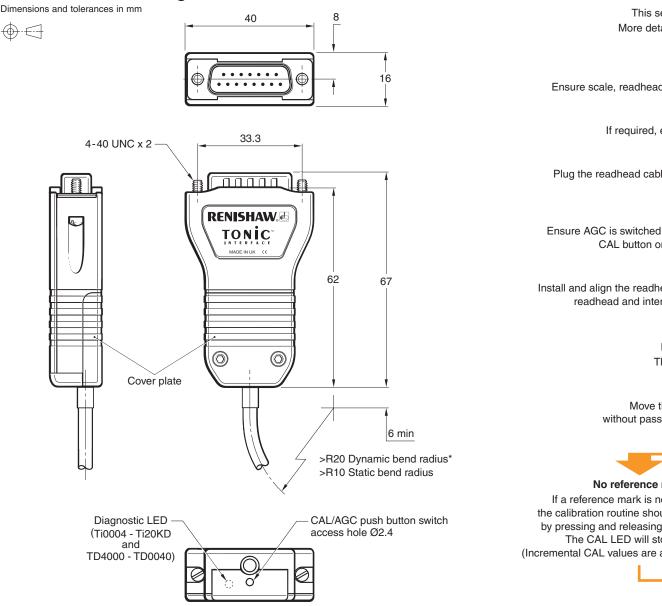

Datum clamp usually coincident with selected IN-TRAC reference mark. However the position is user selectable depending upon application. For lengths 80≤ L ≤190 ensure scale is clamped or clipped in the middle as well as at both ends.

*Clips omitted for clarity. Reference marks positioned equi-distant from scale ends.

For optimum performance the readhead should be installed close to nominal geometry.


Care should be taken to ensure sufficient clearance between the readhead/mounting bracket and clips/datum clamp.

Only special low-profile screws should be used. Screws are provided with all clips/datum clamps and spares can be supplied if required.


0 0 Use with T1011 readhead (End reference mark) 31 0 0 20 ±0.25

Clip/clamp mounting installation

TONIC interface drawing

Dimensions and tolerances in mm

TONIC quick-start quide

This section is a guick-start guide to installing a TONiC system. More detailed information on installing the system is contained in the following sections of the Installation guide.

INSTALLATION

Ensure scale, readhead optical window and mounting faces are clean and free from obstructions.

If required, ensure reference mark selector magnet is correctly positioned.

Plug the readhead cable into the Ti/TD interface under the cover plate and reassemble interface. Connect to receiving electronics and power-up.

Ensure AGC is switched off - the CAL LED on the readhead should be off (if not press and hold the CAL button on the interface until the CAL LED on the readhead switches off).

Install and align the readhead to maximise signal strength over the full axis of travel as indicated by the readhead and interface set-up LEDs (readhead - Green; interface - ideally Blue/Purple).

CALIBRATION

Press and release the CAL button on the interface. The CAL LED on the readhead will be single flashing.

Move the readhead along the scale at slow speed (<100 mm/s), without passing a reference mark, until the CAL LED starts double flashing.

No reference mark

If a reference mark is not being used, the calibration routine should now be exited by pressing and releasing the CAL button. The CAL LED will stop flashing. (Incremental CAL values are automatically stored)

Reference mark

Move the readhead back and forth over the selected reference mark until the CAL LED stops flashing and remains 'off'. (Incremental and reference mark CAL values are automatically stored)

The system is now calibrated and ready for use.

AGC can now be switched on if required by pressing and holding the CAL button until the CAL LED on the readhead switches on.

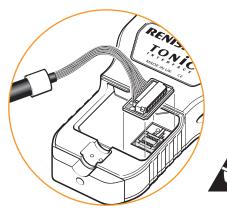
CAL values and AGC status are stored in readhead non-volatile memory at power down.

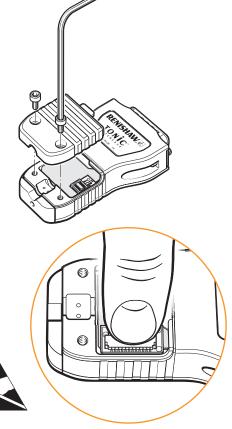
NOTE: If calibration fails, restore factory defaults by pressing and holding the CAL button whilst switching on. Then repeat the installation and calibration routine.

*Dynamic bend radius not applicable for UHV cables.

CAL button operation

Push and release (<3 seconds) - Calibration (CAL) routine enable/disable Push and release (>3 seconds) - Automatic Gain Control (AGC) enable/disable Push and hold during power 'Off/On' cycle - Restore factory defaults Refer to readhead LED functionality chart for CAL LED indications

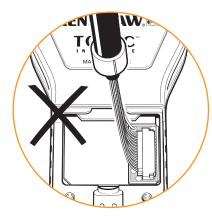

TONIC RSLM/RELM installation guide


System connection

Approved ESD precautions must be followed at all times during readhead and interface electrical connections. The readhead is connected to the Ti/TD interface via a small, rugged connector to allow for easy feed-through during installation.

Connecting the readhead

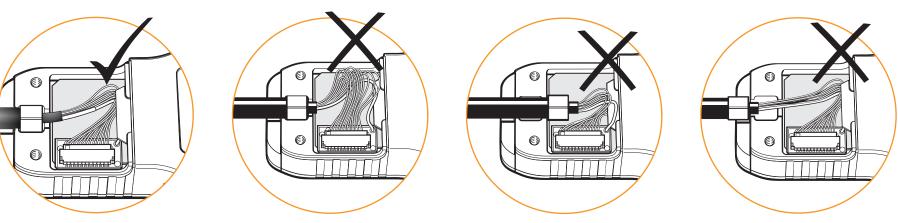
- 1 Remove the cover plate as shown (2 x M2.5 hex head screws).
- 2 Taking care not to touch the pins, plug the connector into the socket in the interface, ensuring correct orientation as shown.



Disconnecting the readhead

- 1 Remove the cover plate on the interface (2 x M2.5 hex head screws).
- 2 Gently lever the connector PCB (on the end of the cable) out of the socket.

Do not pull the cable to remove the connector.


RENISHAND

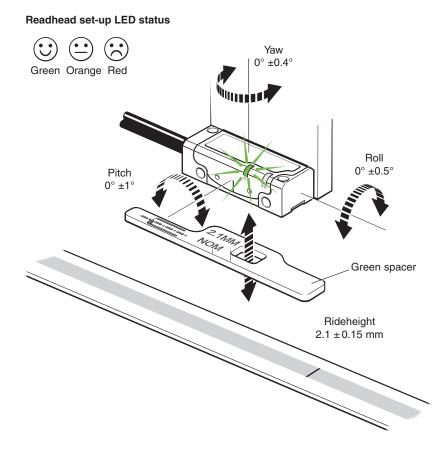
(3) Place the connector in an anti-static bag.

(4) Refit the cover plate.

(3) Refit the cover plate ensuring the cable ferrule is located in the recess on the inside and no wires are trapped under the cover plate.

NOTE: The tightening torque should be between 0.25 Nm and 0.4 Nm.

Readhead mounting and alignment

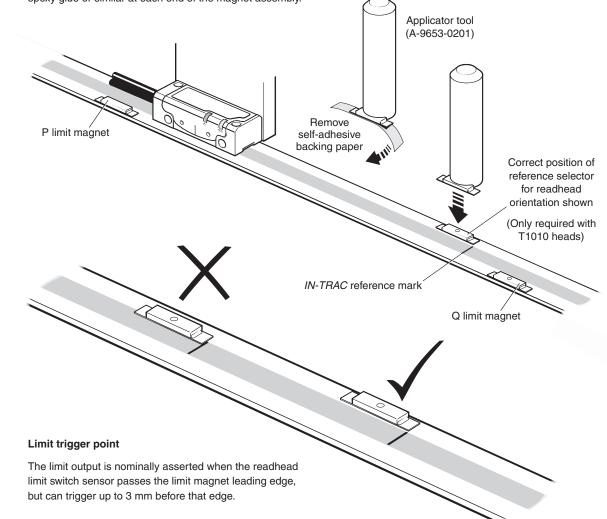

Mounting brackets

The bracket must have a flat mounting surface and should provide adjustment to enable conformance to the installation tolerances, allow adjustment to the rideheight of the readhead, and be sufficiently stiff to prevent deflection or vibration of the readhead during operation.

Readhead set-up

Ensure that the scale, readhead optical window and mounting face are clean and free from obstructions. To set nominal rideheight, place the Green readhead spacer with the aperture under the optical centre of the readhead to allow normal LED function during set-up procedure. Adjust the readhead to maximise the signal strength along the full axis of travel to achieve a Green set-up LED on the readhead (>70% signal). If a digital Ti/TD interface is used, aim for a Blue LED on the interface.

NOTE: The readhead should be installed and set-up with the AGC switched off (CAL LED off). When re-installing, factory defaults should be restored.


Reference mark selector and limit magnet installation

For accuracy and ease of positioning of reference mark selector and limit magnets, the applicator tool (A-9653-0201) should be used. The magnet should be attached to the applicator tool as shown below.

Limit magnets can be positioned at any user defined location along the scale, but the reference mark selector magnet (T1010 readhead only) should be positioned adjacent to the chosen *IN-TRAC* reference mark as shown below.

As the TONiC readhead passes the reference mark selector magnet or limit switch magnet, a force of up to 0.2 N is generated between the magnet and the concentrators on the readhead. The design of the bracket should be sufficiently stiff so that it is able to tolerate such force without distorting. Following the clamping instructions on the scale installation will prevent this magnetic force from disturbing the scale.

NOTE: Reference and limit magnets may creep when influenced by magnetic materials in close proximity. In such cases, they should be held in place using an additional fillet of epoxy glue or similar at each end of the magnet assembly.

System calibration

Calibration is an essential operation that completes readhead set-up, with the optimum incremental and reference mark signal settings stored in the readhead's non-volatile memory.

Before system calibration:

- Clean the scale and readhead optical window (contamination around the reference mark may result in reference mark dephasing).
- If re-installing restore factory defaults.
- Maximise the signal strength along full axis of travel.
- **NOTE:** CAL routine maximum speed <100 mm/s (all Ti/TD interface models). TD interface can be calibrated in either resolution.

Step 1 – Incremental signal calibration

- Ensure Automatic Gain Control is switched off (CAL LED on readhead is not illuminated) before beginning calibration.
- Press and release the CAL button on the end of the interface using a 2 mm allen key or similar tool.
 WARNING! Activating the CAL switch only requires 2.5 N force.
 Applying excess force may permanently damage the switch.
- The CAL LED will now periodically single-flash to indicate that it is in incremental signal calibration mode.
- Move the readhead along the axis, ensuring you do not pass the selected reference mark, until the CAL LED starts double-flashing, indicating the incremental signal is now calibrated and the new settings are stored in the readhead memory.
- The system is now ready for reference mark phasing.
- > For systems without reference mark, go to 'Calibration routine manual exit'
- If the system does not automatically enter the reference mark phasing stage (no double-flashing of the CAL LED) the calibration of the incremental signals has failed. After ensuring failure is not due to overspeed (>100 mm/s), exit the calibration routine, restore factory defaults and check the readhead installation and system cleanliness before repeating the calibration routine.

Step 2 – Reference mark phasing

- Move the readhead back and forth over the selected reference mark until the CAL LED stops flashing and remains off. The reference mark is now phased.
- > The system automatically exits the CAL routine and is ready for operation.
- If the CAL LED continues double-flashing after passing the chosen reference mark many times, it is not detecting the reference mark. Ensure that the correct readhead configuration is being used. Readheads can either output all reference marks or only output a reference mark where a reference selector magnet is fitted.

Calibration routine - manual exit

To exit the calibration routine at any stage press the CAL button. The CAL button will then stop flashing.

CAL LED	Settings stored
Single flashing	None, restore factory defaults and re-calibrate
Double flashing	Incremental only
Off (auto-complete)	Incremental and reference mark

Restoring factory defaults

When re-installing the system, or in the case of continued calibration failure, factory defaults should be restored.

To restore factory defaults;

- Switch system off.
- Press and hold the CAL button whilst switching the system on. The CAL LED on the readhead will flash several times, indicating that the factory defaults have been restored.

- Release CAL button.
- Check the 'Readhead mounting/installation' and re-calibrate the system.

NOTE: System must be re-calibrated after restoring factory defaults.

Switching Automatic Gain Control (AGC) on or off

AGC can be switched on or off via the interface.

Press and hold the CAL button on the interface for >3 seconds to switch AGC on or off. The CAL LED on the readhead will be illuminated when AGC is active.

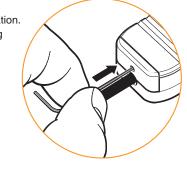
NOTE: The system must be calibrated before switching AGC on.

T101x readhead LED diagnostics

	LED Indication		Status			
Set-up		Green	Normal set-up: signal level >70%			
	Incremental	Orange	Acceptable set-up; signal level 50% to 70%			
		Red	Poor set-up; signal may be too low for reliable operation; signal level <50%			
		Green (flash)*	Normal phasing			
	Reference mark Orange (flash) Red (flash)		Acceptable phasing			
			Poor phasing; clean scale and recalibrate if required			
CAL	On		Automatic Gain Control – On			
	Operating	Off	Automatic Gain Control – Off			
	Calibration	Single flashing	Calibrating incremental signals			
	CalibratiOIT	Double flashing	Calibrating reference mark			
	Reset	Flashing at power-up (<2s)	Restore factory defaults			

*Flash will effectively be invisible when incremental signal level is >70% when passing reference mark.

Ti0004 to Ti20KD and TD4000 to TD0040 Interface LED diagnostics


		-			
Signal	Indication	Status	Alarm output*		
Incremental	I Purple Normal setup; signal level 110% to 135%				
	Blue	Optimum setup; signal level 90% to 110%	No		
	Green	Normal set-up: signal level 70% to 90%	No		
	Orange	Acceptable set-up; signal level 50% to 70%	No		
	Red	Poor set-up; signal may be too low for reliable operation; signal level <50%	No		
Red / blank - flashing Blue / blank - flashing		Poor set-up; signal level <20%; system in error	Yes		
		Over speed; system in error	Yes		
	Purple / blank - flashing	Over signal; system in error	Yes		
Reference mark	Blank flash	Reference mark detected (speed <100 mm/s only)	No		

*Alarm output will take the form of 3-state or line driven E- signal depending on interface configuration. Also, some configurations do not output overspeed alarm. See product nomenclature for details.

-Momentary status only, while fault condition remains.

-Alarm may result in axis position error, re-datum to continue.

TONIC RSLM/RELM installation guide

Output signals

nterface output (ar	Interface Ti0000					
Function	Output	type	Signal		Pin	
Power				Power	4	
			5 V S	Sense	5	
			0 V I	Power	12	
			0 V S	Sense	13	
Incremental signals		Casina	М	+	9	
	A	Cosine	V ₁	-	1	
	Analogue	Sine	V ₂	+	10	
				-	2	
Reference mark	Analo	<u>auo</u>	М	+	3	
	Allalo	gue	V _o	-	11	
Limits	Open collector		Open collector		V _p	7
	open ee	V _q		V _q	8	
Set-up	-	_		/ _x	6	
Calibrate	-	-		AL	14	
Shield	-		Inner	shield	Not connected	
	-		Outer	shield	Case	

Output type

Analogue

Open collector

_

_

_

_

Analogue

Cosine

Sine

Signal

5 V

0 V

V_p

V_q

V_x

CAL

Inner shield*

Outer shield

 V_1

٧,

V_o

+

-

+

-

+

-

Colour

Brown

White

Red

Blue

Yellow

Green

Violet

Grey

Pink

Black

Clear

Orange

Green/Yellow

Outer screen

nterface output (digit	tal) Ti0004 to Ti20k	Interface				
nd TD4000 to TD0040)	Ti0004 - Ti20KD	TD4000 - TD0040			
Function	Output type	Signal		Pin	Pin	
Power		5	V	7, 8	7, 8	
		0	V	2, 9	2, 9	
Incremental		А	+	14	14	
	RS422A	~	-	6	6	
	digital B	B	+	13	13	
		D	-	5	5	
Reference mark	RS422A	z	+	12	12	
	digital	2	-	4	4	
Limits	Open collector	P [†]		11	-	
	Open collector	(Ç	10	-	
Set-up	RS422A digital	2	K	1	1	
Alarm [‡]		Е	+	-	11	
	-	E	-	3	3	
Resolution switching [⊕]	-	-	-	-	10	
Shield	-	Inner	shield	-	-	
	-	Outer shield		Case	Case	

[†]Becomes alarm (E+) for Ti options E, F, G, H

⁹On TD interfaces pin 10 should be connected to 0 V to switch to lower resolution.

Output connector for all interfaces; 15 way D-type plug

· · · · · · · ·

Speed

Clocked output option (MHz)		Maximum speed (m/s)									
	Ti0004 5 μm	Ti0020 1 μm	Ti0040 0.5 μm	Ti0100 0.2 μm	Ti0200 0.1 μm	Ti0400 50 nm	Ti1000 20 nm	Ti2000 10 nm	Ti4000 5 nm	Ti10KD 2 nm	Ti20KD 1 nm
50	10	10	10	6.48	3.24	1.62	0.648	0.324	0.162	0.0654	0.032
40	10	10	10	5.40	2.70	1.35	0.540	0.270	0.135	0.054	0.027
25	10	10	8.10	3.24	1.62	0.810	0.324	0.162	0.081	0.032	0.016
20	10	10	6.75	2.70	1.35	0.675	0.270	0.135	0.068	0.027	0.013
12	10	9	4.50	1.80	0.900	0.450	0.180	0.090	0.045	0.018	0.009
10	10	8.10	4.05	1.62	0.810	0.405	0.162	0.081	0.041	0.016	0.0081
08	10	6.48	3.24	1.29	0.648	0.324	0.130	0.065	0.032	0.013	0.0065
06	10	4.50	2.25	0.90	0.450	0.225	0.090	0.045	0.023	0.009	0.0045
04	10	3.37	1.68	0.67	0.338	0.169	0.068	0.034	0.017	0.0068	0.0034
01	4.2	0.84	0.42	0.16	0.084	0.042	0.017	0.008	0.004	0.0017	0.0008
nalogue output		10 (-3dB)									

*No inner shield on UHV cables.

Readhead output

Incremental signals

Reference mark

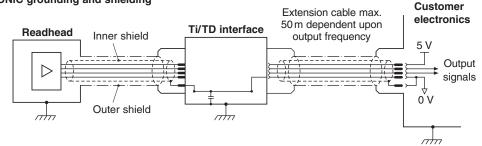
Limits

Set-up

Shield

Calibrate

Function

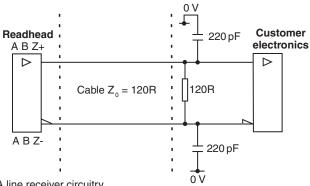

Power

TONiC RSLM/RELM installation guide

NOTE: TD maximum speeds are resolution dependent as defined above.

Electrical connections

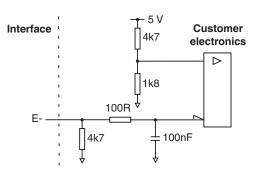
TONiC grounding and shielding

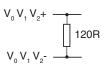


IMPORTANT: The outer shield should be connected to the machine earth (Field Ground). The inner shield should be connected to 0 V at receiving electronics only. Care should be taken to ensure that the inner and outer shields are insulated from each other. If the inner and outer shields are connected together, this will cause a short between 0 V and earth, which could cause electrical noise issues.

NOTE: Maximum cable length between readhead and Ti/TD interface is 10 m

Recommended signal termination


Digital outputs


Standard RS422A line receiver circuitry.

Capacitors recommended for improved noise immunity.

Single ended alarm signal termination (Ti options A, B, C, D)

Analogue outputs

Limit output (No limits on TD interfaces)

*Select R so maximum current does not exceed 20 mA. Alternatively use a suitable relay or opto-isolator.

Remote CAL operation (Analogue versions only)

All Ti/TD interfaces include a push button switch to enable CAL/AGC features. However, remote operation of the CAL/AGC is possible via pin 14 of analogue Ti0000 interfaces. For applications where no interface is used, remote operation of CAL/AGC is essential.

TD interface resolution switching

Output specifications

Digital output signals

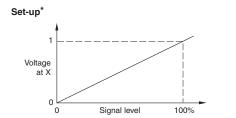
Form - Square wave differential line driver to EIA RS422A (except limits P and Q)

Analogue output signals

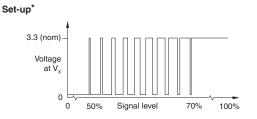
NOTE: No limits on TD interfaces. P limit becomes E+ for options E, F, G, H.

Alarm⁺ Asynchronous pulse

Line driven



Alarm asserted when signal level is less than 20% or greater than 135%. Alarm is also asserted if readhead speed is too high for reliable operation.


E- output only for Ti options A, B, C, D

or 3-state alarm

Differentially transmitted signals forced open circuit for >15 ms when alarm conditions valid.

Set-up signal voltage proportional to incremental signal amplitude

Between 50% and 70% signal level, V_x is a duty cycle, 20 μ m duration. Time spent at 3.3 V increases with incremental signal level. At >70% signal level V_y is nominal 3.3 V. *Set-up signals as shown are not present during calibration routine. [†]Inverse signals not shown for clarity

General specifications

				a opeemeaterie			
Power supply	5 V ±10%	Readhead only <100 mA T101x with Ti0000 <100 mA	Mounting	Epoxy datum point and adhesive tape (nominal thickness 0.2 mm)			
		T101x with Ti0004 – Ti20KD or TD4000 – TD0040 <200 mA		or datum clamp and mounting clips.			
		NOTE: Current consumption figures refer to	Reference mark	IN-TRAC auto phase optical reference mark repeatable to unit			
		unterminated systems. For digital outputs a further 25 mA per channel pair		of resolution throughout specified temperature speed and range.			
		(eg A+, A-) will be drawn when terminated with 120R.		See installation drawings for information on reference mark position.			
		For analogue outputs, a further 20 mA in total will be					
		drawn when terminated with 120R.	RSLM				
		Power from a 5 V dc supply complying with the requirements for SELV of standard IEC BS EN 60950-1.	Material	Hardened martensitic stainless steel.			
	Ripple	200 mVpp maximum @ frequency up to 500 kHz	Form	1.5 mm x 14.9 mm (H x W)			
Temperature (system)	Femperature (system) Storage -20 °C to +70 °C		Accuracy	±1.5 μm up to 1 m			
	Operating	0 °C to +70 °C		±2.25 from 1 m to 2 m			
(UHV readhead)	Bakeout	+120 °C		$\pm 3 \ \mu m$ from 2 m to 3 m			
Sealing (readhead)		IP40		$\pm 4 \ \mu m$ from 3 m to 5 m			
(interface)		IP20		(includes slope and linearity @20 °C).			
Acceleration (readhead)	Operating	500 m/s ² , 3 axes		Calibration traceable to International Standards.			
Shock (system)	Operating	500 m/s ² , 11 ms, ½ sine, 3 axes	Thermal expansion	10.1 ±0.2 μm/m/°C @20 °C			
Vibration (system)	Operating	100 m/s ² , 55 Hz to 2000 Hz, 3 axes					
Mass		Readhead 10 g	Maximum length	5 m			
		Interface 100 g					
		Cable 26 g/m UHV cable 14 g/m	RELM				
Environmental		Compliant with EU Directive 2011/65/EU (RoHS)					
Readhead cable (standard)		Double shielded, outside diameter 4.25 ± 0.25 mm.	Material	ZeroMet [™] . High stability, low-expansion nickel-iron alloy.			
neathead cable (standard)		Flex life >20 x 10^6 cycles at 20 mm bend radius.	Form	1.6 mm x 14.9 mm (H x W)			
		UL recognised component 🔊.	Accuracy	Certified to $\pm 1\mu m$ (includes slope and linearity)@20 °C.			
(UHV)		Tin coated braided single screen FEP core insulation.	-	Calibration traceable to International Standards.			
Maximum cable length			Thermel evenesion				
Readhead	to interface	10 m	Thermal expansion	0.75 ±0.35 μm/m/°C @20 °C			
Interface to controller		Clocked output option Maximum	Maximum length	1.5 m			

Maximum

cable length (m)

25

50

50

Renishaw encoder systems have been designed to the relevant EMC standards, but must be correctly integrated to achieve EMC compliance. In particular, attention to shielding arrangements is essential.

Clocked output option

(MHz)

40 to 50

<40

analogue

Scale technical specifications

Renishaw plc

New Mills, Wotton-under-Edge, Gloucestershire GL12 8JR United Kingdom T +44 (0)1453 524524 F +44 (0)1453 524901 E uk@renishaw.com

www.renishaw.com

For worldwide contact details, please visit our main website at www.renishaw.com/contact

RENISHAW[®] and the probe symbol used in the RENISHAW logo are registered trade marks of Renishaw pic in the United Kingdom and other countries. **apply innovation** and names and designations of other Renishaw products and technologies are trade marks of Renishaw pic or its subsidiaries.

© 2008-2023 Renishaw plc All rights reserved Issued 0823