

Werkzeugstahl 1.2709 Pulver für die additive Fertigung

Prozessspezifikation

Bezeichnung des Pulvers	Werkzeugstahl
Schichtstärke	40 μm
Laserleistung	200 W
Additives Fertigungssystem	AM 250 und AM 400

Materialbeschreibung

Werkzeugstähle (auch als martensitaushärtende Werkzeugstähle bezeichnet) bilden eine Klasse von Eisenlegierungen. Diese Werkstoffgruppe besteht aus einem martensitischen Kristallgefüge ("Martensit"), die seine Festigkeit durch Aushärten ("Aging") bei Temperaturen von etwa 500 °C erlangt, daher auch der englische Name "Maraging". Diese Legierungen, deren Kohlenstoffgehalt extrem niedrig ist, verfügen über sehr hohe Festigkeit- und Härteeigenschaften, die sich eher durch die Ausscheidung der intermetallischen Verbindungen als durch den Kohlenstoffgehalt ergeben.

Nickel ist das wichtigste Legierungselement, während Kobalt, Molybdän und Titan sekundäre intermetallische Legierungsmetalle darstellen.

Werkzeugstahl 1.2709 ist auch bekannt als Maraging-Steel M300.

Materialeigenschaften

- Hohe Festigkeit
- Hoher Härtegrad
- · Hohe Zeitfestigkeit
- Leichte maschinelle Bearbeitung

Anwendungen

- Werkzeugeinsätze
- Werkzeug und Formen
- · Hochfeste Komponenten

Allgemeine Daten – Ursprungsmaterial

Dichte	8,1 g/cm ³
Wärmeleitfähigkeit	14,2 W/mK bei 20 °C, 21,0 W/mK bei 600 °C, 28,6 W/mK bei 1300 °C
Schmelzpunkt	1413 °C
Thermischer Ausdehnungskoeffizient	10,3 10 ⁻⁶ K ⁻¹

Hinweis 1 Aushärtungsbedingungen: 1. Bis auf 500 °C ±10 °C über einen Zeitraum von 60 bis 90 Minuten erhitzen, diese Temperatur 6 Stunden lang halten; 2. Ofen auf 300 °C abkühlen lassen; 3. An Umgebungsluft abkühlen lassen.

Hinweis 2 Testbedingungen in der Umgebungstemperatur gemäß ASTM E8. Vor dem Test bearbeitet. Angegebene Werte basieren auf der Untersuchung von 6 Probekörpern.

Hinweis 3 Geprüft gemäß ASTM E384-11, nach dem Polieren.

Hinweis 4 Geprüft gemäß JIS B 0601-2001 (ISO 97). Endzustand nach dem Glasperlenstrahlen.

www.renishaw.de

Zusammensetzung des Pulvers

Element	Masse / max. %
Eisen	Verhältnis
Nickel	17,00 bis 19,00
Kobalt	7,00 bis 10,00
Molybdän	4,50 bis 5,20
Titan	0,30-1,20
Silizium	≤ 0,10
Mangan	≤ 0,15
Kohlenstoff	≤ 0,03
Phosphor	≤ 0,01
Schwefel	≤ 0,01

^{*}Pulverzusammensetzung gemäß ASTM Standard. Die Pulver von Renishaw werden unter strengeren Vorgaben ausgeliefert, um Abweichungen zwischen den Chargen auf ein Mindestmaß zu beschränken. Die in diesem Datenblatt dargestellten Ergebnisse beziehen sich auf Muster, die unter Verwendung der strenger spezifizierten Pulver von Renishaw hergestellt wurden. Wenden Sie sich bitte an Renishaw, wenn Sie weitere Informationen zu den Spezifikationen wünschen oder Hilfe bei der Klassifizierung von Pulvern benötigen, die nicht von Renishaw stammen.

Mechanische Eigenschaften additiv gefertigter Teile

	Endzustand	Standardab- weichung (±1σ)	Ausgehärtet (siehe Hinweis 1)	Standardab- weichung (±1σ)	
Zugfestigkeit (UTS) (siehe Hinweis 2)					
Horizontalrichtung (XY)	1141 MPa	7 MPa	1806 MPa	6 MPa	
Vertikalrichtung (Z)	1122 MPa	14 MPa	1794 MPa	9 MPa	
Streckgrenze (siehe Hinweis 2)					
Horizontalrichtung (XY)	1016 MPa	8 MPa	1753 MPa	20 MPa	
Vertikalrichtung (Z)	999 MPa	20 MPa	1730 MPa	20 MPa	
Reißdehnung (siehe Hinweis 2)					
Horizontalrichtung (XY)	7,3%	1%	5,5%	1%	
Vertikalrichtung (Z)	7,5%	1%	7%	1%	
Elastizitätsmodul (siehe Hinweis 2)					
Horizontalrichtung (XY)	160 GPa	5 GPa	170 GPa	8 GPa	
Vertikalrichtung (Z)	162 GPa	10 GPa	175 GPa	11 GPa	
Härte (nach Vickers) (siehe Hinweis 3)					
Horizontalrichtung (XY)	363 HV0,5	5 HV0,5	542 HV0,5	7 HV0,5	
Vertikalrichtung (Z)	355 HV0,5	7 HV0,5	543 HV0,5	8 HV0,5	
Oberflächenrauheit (R _a) (siehe Hinweis 4)					
Horizontalrichtung (XY)	3,5 μm bis 5 μm				
Vertikalrichtung (Z)	4 μm bis 6 μm				

Die Dichte des additiv gefertigten Werkzeugstahls 1.2709 beträgt in der Regel 99,8%. Dieser Wert ergibt sich aus der optischen Messung eines 10 mm x 10 mm x 10 mm Testkörpers bei 75-facher Vergrößerung.

