OTS - optical tool setter
Contents

<table>
<thead>
<tr>
<th>Section 1</th>
<th>Before you get started</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Provides information on patents, trademarks, declarations of conformity, warranty and safety.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 2</th>
<th>OTS basics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>An overview of the OTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 3</th>
<th>System installation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Explanation of how to install the batteries within the probe module, how to mount the OTS on a the machine. Information is also provided on how to site each of Renishaw’s receiver units within the machine to obtain the optimum optical performance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 4</th>
<th>Trigger Logic™</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The 'Trigger Logic™' method developed by Renishaw, allows probe settings to be configured using a sequence of stylus deflections.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 5</th>
<th>Service and maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Keeping your OTS in good working order.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 6</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Find the solution.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 7</th>
<th>Parts list</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Find the part you require from our comprehensive list of spare parts and accessoires.</td>
</tr>
</tbody>
</table>
Section 8 Probe settings record table
Know your probe settings at a glance.

Section 9 Definition of probing terms
Know what is meant by the terms commonly associated with probing.
Before you get started

Contents

Before you get started ... 1.2
Disclaimer .. 1.2
Trademarks .. 1.2
Warranty ... 1.2
Changes to equipment .. 1.2
CNC machines .. 1.2
Care of the probe .. 1.2
Patents .. 1.2
EC declaration of conformity ... 1.3
FCC declaration (USA) ... 1.3
Safety .. 1.4
Before you get started

Disclaimer

Considerable effort has been made to ensure that the contents of this document are free from inaccuracies and omissions. However, Renishaw makes no warranties with respect to the contents of this document and specifically disclaims any implied warranties.

Renishaw reserves the right to make changes to this document and to the product described herein without obligation to notify any person of such changes.

Trademarks

RENISHAW® and the probe emblem used in the RENISHAW logo are registered trademarks of Renishaw plc in the UK and other countries.

apply innovation and Trigger Logic are trademarks of Renishaw plc.

All other brand names and product names used in this document are trade names, service marks, trademarks, or registered trademarks of their respective owners.

Warranty

Equipment requiring attention under warranty must be returned to your equipment supplier. No claims will be considered where Renishaw equipment has been misused, or where repairs or adjustments have been attempted by unauthorised persons.

Changes to equipment

Renishaw reserves the right to change equipment specifications without notice.

CNC machines

CNC machine tools must always be operated by fully trained personnel in accordance with the manufacturer's instructions.

Care of the probe

Keep system components clean and treat the probe as a precision tool.

Patents

Features of the OTS probe, and other similar Renishaw probes, are subject of one or more of the following patents and/or patent applications:

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Country</th>
<th>Patent Number</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 0337669</td>
<td>US</td>
<td>5,150,529</td>
<td></td>
</tr>
<tr>
<td>EP 0695926</td>
<td>US</td>
<td>5,669,151</td>
<td></td>
</tr>
<tr>
<td>EP 0974208</td>
<td>US</td>
<td>6,472,981 B2</td>
<td></td>
</tr>
<tr>
<td>EP 1130557</td>
<td>US</td>
<td>6,839,563 B1</td>
<td></td>
</tr>
<tr>
<td>EP 1373995</td>
<td>US</td>
<td>6,869,026 B2</td>
<td></td>
</tr>
<tr>
<td>EP 1397637</td>
<td>US</td>
<td>6,941,671 B2</td>
<td></td>
</tr>
<tr>
<td>EP 1425550</td>
<td>US</td>
<td>7145468 B2</td>
<td></td>
</tr>
<tr>
<td>EP 1503524 B</td>
<td>US</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1701234</td>
<td>US</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1734426</td>
<td>JP</td>
<td>2,994,401</td>
<td></td>
</tr>
<tr>
<td>JP 2004-522,961</td>
<td></td>
<td>2,994,401</td>
<td></td>
</tr>
<tr>
<td>JP 2004-530,234</td>
<td></td>
<td>2,994,401</td>
<td></td>
</tr>
</tbody>
</table>
EC DECLARATION OF CONFORMITY

Renishaw plc declare that the product: -

Name Description
OTS Optical tool setter

has been manufactured in conformity with the following standard: -

Immunity to annex A - industrial locations.

Emissions to class A (non-domestic) limits.

and that it complies with the requirements of directives (as amended): -

89/336/EEC Electromagnetic compatibility (EMC)

The above information is summarised from the full EC Declaration of Conformity. A copy is available from Renishaw on request.

FCC DECLARATION (USA)

FCC Section 15.19

This device complies with Part 15 of the FCC rules.

Operation is subject to the following two conditions:

1. This device may not cause harmful interference.

2. This device may accept any interference received, including interference that may cause undesired operation.

FCC Section 15.105

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.

FCC Section 15.21

The user is cautioned that any changes or modifications not expressly approved by Renishaw plc, or authorised representative could void the user’s authority to operate the equipment.

Warning labels to be placed on equipment and for information to be supplied to the user.
Safety

Information for the user

Handle and dispose of batteries in accordance with the manufacturer's recommendations. Use only the recommended batteries. Do not allow the battery terminals to contact other metallic objects.

Information for the machine supplier/ installer

It is the machine supplier's responsibility to ensure that the user is made aware of any hazards involved in operation, including those mentioned in Renishaw product literature, and to ensure that adequate guards and safety interlocks are provided.

Under certain circumstances, the probe signal may falsely indicate a probe seated condition. Do not rely on probe signals to halt the movement of the machine.

Information for the equipment installer

All Renishaw equipment is designed to comply with the relevant EEC and FCC regulatory requirements. It is the responsibility of the equipment installer to ensure that the following guidelines are adhered to, in order for the product to function in accordance with the these regulations:

- any interface MUST be installed in a position away from any potential sources of electrical noise, i.e. power transformers, servo drives etc;
- all 0V / ground connections should be connected to the machine 'star point' (the 'star point' is a single point return for all equipment ground and screen cables), This is very important and failure to adhere to this can cause a potential difference between grounds;
- all screens must be connected as outlined in the user's instructions;
- cables must not be routed alongside high current sources, i.e. motor power supply cables etc, or be near high speed data lines;
- cable lengths should always be kept to a minimum.

CAUTION: The OTS has a glass window. Handle with care if broken to avoid injury.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2.2</td>
</tr>
<tr>
<td>Trigger Logic™</td>
<td>2.2</td>
</tr>
<tr>
<td>Probe settings</td>
<td>2.2</td>
</tr>
<tr>
<td>Switch-on method</td>
<td>2.2</td>
</tr>
<tr>
<td>Optical start configuration</td>
<td>2.2</td>
</tr>
<tr>
<td>Probe switch off method</td>
<td>2.3</td>
</tr>
<tr>
<td>Enhanced trigger filter</td>
<td>2.2</td>
</tr>
<tr>
<td>Optical power</td>
<td>2.3</td>
</tr>
<tr>
<td>Operation</td>
<td>2.4</td>
</tr>
<tr>
<td>Probe specification</td>
<td>2.5</td>
</tr>
<tr>
<td>Batteries</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Introduction

The OTS is a tool setter with optical transmission suitable for use on small to large machining centres. It is designed to resist optical interference, false triggering and shock.

The OTS operates using 'Modulated' mode, and must be used with a modulated receiver.

All OTS settings are configured using the 'Trigger Logic™' technique. This enables the user to review and subsequently change probe settings by deflecting the stylus whilst observing the LED display.

Configurable settings are:

- Start configuration
- Enhanced trigger filter setting
- Optical power

The tool is driven in the machine Z axis for tool length measurements and broken tool detection.

Rotating tools are set in the machine's X and Y axes for tool radius offsets.

Screw adjusters allow the stylus to be aligned with the machine's axes.

Trigger Logic™

The user can configure probe settings quickly and easily by deflecting the stylus in a sequence until the correct colour configuration is observed on the LED display, this programmable method is known as Trigger Logic™.

Probe settings

Switch on method

The OTS will be switched on in less than 0.5 seconds by an optical signal.

After being switched on, the OTS must be on for 1 second minimum before being switched off.

Optical start configuration

The user can configure the OTS to either Probe 1 or Probe 2 identification (see Changing the probe settings 4.3).

The OTS is factory set to Probe 2 so that it can be used in a system with modulated spindle probes.

Typically the OTS is used in Probe 2.

A twin tool setter application would require that one of the OTS probes is reconfigured to Probe 1.

Switch off method

A timer automatically switches the probe off 90 minutes after the last trigger if not turned off by an M code.

Enhanced trigger filter

Probes subjected to high levels of vibration or shock loads may trigger without having been contacted. The enhanced trigger filter improves the probe's resistance to these effects.

When the filter is enabled, a constant nominal 7 ms delay is introduced to the probe output.

It may be necessary to reduce the approach speed to allow for the increased stylus overtravel during the extended time delay.
Probe settings continued

Optical power

Where the separation between the OTS and the receiver is small, the low optical power may be used. In this setting the optical transmission operating range will be reduced by approximately 30%. Battery life will also be increased.

Factory set to standard optical power.

The OTS can be in one of three modes:

Stand-by mode

The OTS is waiting for a switch on signal.

Operating mode

The OTS is ready for use.

Configuration mode

The Trigger Logic™ configuration method allows current probe settings to be reconfigured.
Operation

![Diagram of tool setup](image)

Recommended rotating tool feed rates

Cutters should be rotated in reverse to the cutting direction. Renishaw tool setting software calculates speeds and feeds automatically using the following information.

First touch – machine spindle rev/min

Rev/min for the first move against the probe stylus:

- Diameters below 24 mm, 800 rev/min is used.
- Diameters from 24 mm to 127 mm, rev/min is calculated using a surface speed of 60 m/min (197 ft/min).
- Diameters above 127 mm, 150 rev/min is used.

First touch – machine feed rate

The feedrate \(f \) is calculated as follows:

\[
 f = 0.16 \times \text{rev/min} \quad \text{f units mm/min (diameter set)} \\
 f = 0.12 \times \text{rev/min} \quad \text{f units mm/min (length set)}
\]

Second touch – machine feed rate

800 rev/min, 4 mm/min (0.16 in/min) feedrate.

Software routines

Software routines for tool setting are available from Renishaw for various machine controllers and are described in data sheet H-2000-2289. In addition data sheet H-2000-2298 lists available Renishaw software programs. Both data sheets can be downloaded from www.renishaw.com/mtp

Achievable set-up tolerances

The tolerances to which tools can be set depend upon the flatness and parallelism of the stylus tip setting. A value of 5 µm (0.0002 in) front to back and side to side is easily achievable over the flat portion of the stylus tip, and 5 µm (0.0002 in) parallelism is easily achievable with the axes of a square tip stylus. This setting accuracy is sufficient for the majority of tool setting applications.
Probe specification

Dimensions (mm (in))

- **Base**
 - $Z = 6$ (0.24)
 - $X/Y = 3.5$ (0.14)
 - $X/Y = 3.5$ (0.14)
- **Machine table**
 - $Ø54$ (2.125) PCD
- **Disc**
 - $Ø12.7$ (Ø0.5)
 - Two holes for dowel pins
 - Ø6.13 (0.24) x 13 (0.51) deep MIN
 - Equi-spaced on $Ø54$ (2.125) PCD at 45° to OTS axis
- **Square stylus**
 - 19.05 (0.75) x 13 (0.51) deep MIN
 - Equi-spaced on $Ø54$ (2.125) PCD at 45° to OTS axis

Disc stylus

- $Ø12.7$ mm x 8 mm (Ø0.5 in x 0.31 in)
- Tungsten carbide 75 Rockwell C

Square stylus

- 19.05 mm x 19.05 mm (0.75 in x 0.75 in)
- Ceramic 75 Rockwell C

Principal application: Machining centres

Dimensions:

- Length with square stylus: 122 mm (4.80 in)
- Width: 60 mm (2.36 in)
- Height: 103.25 mm (4.06 in)

Weight:

- with disc stylus: batteries
- without batteries: 831 g (29.31 oz)
- 17 g (0.60 oz)
Probe specification continued

Transmission type: infra-red optical transmission

Turn on control: Machine M code

Turn off control: Machine M code

Transmission operating range: Up to 5 m (16.4 ft)

Receiver/interface: OMI-2T, OMI-2H or OMI-2

Sense directions: Omni-directional ± X, ± Y, + Z

Repeatability:
- 1.00 µm (0.00004 in)
- Maximum mean 2σ value. Valid as tested with a 35 mm (1.4 in) straight stylus and a velocity of 480 mm/min at the centre of the stylus tip

Stylus trigger force:
- (factory set using 50 mm (1.97 in) stylus) 1.3 N to 2.4 N / 130 gf to 240 gf (4.5 ozf to 8.5 ozf) depending on sense direction

Stylus overtravel:
- XY ± 3.5 mm (0.14 in)
- Z 6 mm (0.23 in)

Battery type: 1/2 AA size Lithium Thionyl Chloride (3.6 V) x 2

Battery reserve life: Approximately 1 week after a low battery warning is first given

Low battery indication: Blue flashing LED in conjunction with normal green probe status LED

Dead battery indication: Constant or flashing red

Lithium thionyl chloride (LTC) battery life

<table>
<thead>
<tr>
<th>Stand-by life (days - typical)</th>
<th>5% usage = 72 minutes/day (days - typical)</th>
<th>Continuous use (hours - typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard power mode</td>
<td>Low power mode</td>
<td>Standard power mode</td>
</tr>
<tr>
<td>180</td>
<td>180</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
</tr>
</tbody>
</table>
Contents

Preparing the OTS for use ... 3.2
Fitting the stylus and captive link... 3.2
Installing the batteries ... 3.3
Mounting the probe on the machine table .. 3.4
Positioning the optical module.. 3.5
Stylus level setting... 3.6
Square stylus setting ... 3.8

Typical probe system with OMI-2T/OMI-2H 3.11

Performance envelope when using the OTS with an OMI-2T/OMI-2H/OMI-2 (Modulated transmission) 3.12
Preparation of the OTS for use

Fitting the stylus, break stem and captive link

NOTE: Always hold the support bar in position to counteract twisting forces and avoid over-stressing the stylus break stem.
Installing the batteries

Take care not to short the battery contacts as this may be a fire hazard. Ensure the contact strips are located securely.

When installing batteries, do not allow coolant or debris to enter the battery compartment.

Check that the polarity is correct.

NOTE: If dead batteries are inadvertently inserted into the probe then the LEDs will remain constant red.

Review current probe settings in accordance with 'Section 4 - Trigger Logic™'
Mounting the probe on the machine table

1. Select a position for the tool setter on the machine table. Position to minimise the possibility of collision and ensure the optical window faces towards the receiver.

2. Separate the base from the body by slackening four screws 1 and two screws 2 using a 2.5 mm AF hexagon key.

3. Fit the cap head bolt and T nut (not supplied by Renishaw) and tighten to secure the base to the machine table.

NOTE: A smaller washer may be fitted for a smaller bolt by disassembling the base.

4. Refit the body onto the base and tighten screws 1 and 2. (If a square stylus is fitted and fine rotational adjustment is required, (see page 3.8 - Stylus rotational setting), before tightening screws 2).

5. Fit the stylus (see page 3.2 - Fitting the stylus, break stem and captive link).

Dowel pins (shown on page 2.5)

Two dowel pins (supplied in the tool kit) may be fitted on installations where there is a requirement to remove and remount the tool setter.

To fit the dowel pins, drill two holes in the machine table to correspond with the two probe base holes. Place the dowel pins in the holes and refit the probe base.
Positioning the optical module

The optical module can be set in one of seven positions at 15° increments, to allow the optical window to point towards the receiver.

1. To align the optical module, slacken and pull back the clamp screw.
2. Rotate the optical module to line up a reference mark on the optical housing with the reference feature on top of the body.
3. Re-locate the clamp screw and tighten.

Clamp screw
4mm A/F
5 Nm (3.7 lbf.ft)
Stylus level setting

The top surface of the stylus must be set level, front to back and side to side.

Front to back level adjustment

To raise front
Slacken locking screw 2 and adjust height adjusting screw 1 until the stylus is level. Then tighten fully locking screw 2.

To lower front
Slacken height adjusting screw 1 and adjust locking screw 2 until the stylus is level. Then fully tighten locking screw 2.
Side to side level adjustment is obtained by alternately adjusting grubscrews 3, which causes the probe module to rotate and change the stylus level setting.

When a level stylus surface is obtained, tighten screws 3.
Square stylus setting

Rotational adjustment allows the stylus to be aligned with the machine axes

1 Coarse rotational adjustment

Slacken grubscrew 1 and rotate the stylus by hand to obtain alignment, then fully tighten the grubscrew.

NOTE: Always hold the support bar in position to counteract twisting forces and avoid over-stressing the stylus break stem.

Support bar

2 mm AF
1.1 Nm (0.81 lbf.ft)
2 Fine rotational adjustment

Opposing grubscrews 3 are tightened against a locating pin fixed to the base. By alternatively slackening and re-tightening these grubscrews, fine rotational adjustment of the stylus is achieved.

Then tighten lightly.

Continued on next page
2.5 mm AF
0.8 Nm (0.6 lbf.ft)

Fully tighten body locking screws 2.
Typical probe system with OMI-2T/OMI-2H

Spindle probe for inspection
Spindle probes must use modulated transmission
OTS installation guide

OTS performance envelope with an OMI-2T/OMI-2H/OMI-2 (modulated transmission)

The OTS probe and receiver diodes must be in the other’s field of view and within the performance envelope shown. The OTS performance envelope is based on the receiver being at 0° and vice-versa.

NOTE: A single OTS (configured to probe 1) can be used with an OMI-2 (configured to use level input).

Operating envelope

Reflective surfaces within the machine may increase the signal transmission range.

Coolant and swarf residue accumulating on the optical window will have a detrimental effect on transmission performance. Wipe clean as often as is necessary to maintain unrestricted transmission.

Some reduction in range may result when operating in temperatures of 0° C to 5° C (32° F to 41° F) and 50° C to 60° C (122° F to 140 °F).

Probe standard power or low power setting

If two machines are operating in close proximity to each other, take care to ensure that signals transmitted from a probe on one machine are not received by the receiver on the other machine, and vice versa.

When this is the case, it is recommended that the low optical power setting on probes is used, and that the low range setting is used on the receiver.

Please refer to the receiver User’s Guide.

Receiver position

To assist finding the optimum position for the installation, signal condition is displayed on the OMI-2T/OMI-2H/OMI-2 receiver.
Contents

Reviewing the probe settings ... 4.2

Placing the probe in configuration mode .. 4.3

Changing the probe settings ... 4.3

Operating mode ... 4.4
Reviewing the probe settings

Key to the symbols

- **LED short flash.**
- **LED long flash.**

1. **LED check**

2. **Enhanced trigger filter setting**
 - **Off**
 - **On**

3. **Probe identification**
 - **Probe 1**
 - **Probe 2**

4. **Optical power**
 - **Low**
 - **Standard**

5. **Battery status (probe seated)**
 - **Battery good**
 - **Battery low**

6. **Probe in standby**
Placing the probe in configuration mode

Key to the symbols

<table>
<thead>
<tr>
<th>LED short flash.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED long flash.</td>
</tr>
<tr>
<td>Deflect the stylus. Wait less than 4 seconds before moving to next menu option.</td>
</tr>
<tr>
<td>Deflect the stylus. Wait more than 4 seconds before moving to next menu.</td>
</tr>
<tr>
<td>To exit, leave the stylus untouched for more than 20 seconds.</td>
</tr>
</tbody>
</table>

Changing the probe settings

Battery status (probe triggered)

<table>
<thead>
<tr>
<th>Battery good</th>
<th>or</th>
<th>Battery low</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢🟢🟢🟢🟢</td>
<td></td>
<td>🟢🟢🟢🟢🟢🟢</td>
</tr>
</tbody>
</table>

To change enhanced trigger filter setting

<table>
<thead>
<tr>
<th>Off</th>
<th>On</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢🟢</td>
<td>🟢🟢🟢</td>
</tr>
</tbody>
</table>

Probe identification

<table>
<thead>
<tr>
<th>Probe 1</th>
<th>Probe 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢🟢🟢</td>
<td>🟢🟢🟢🟢</td>
</tr>
</tbody>
</table>

To change optical power

<table>
<thead>
<tr>
<th>Low</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢🟢</td>
<td>🟢🟢🟢🟢</td>
</tr>
</tbody>
</table>

Return to ‘To change enhanced trigger filter setting’

New settings complete

Deflect the stylus and hold deflected until after the battery status has been displayed at the end of the review sequence.
Operating mode

NOTE:
Due to the nature of Lithium Thionyl Chloride batteries, if a ‘low battery’ LED sequence is ignored or overlooked, then it is possible for the following sequence of events to occur:

1. When the probe is active, the batteries discharge until battery power becomes too low for the probe to operate correctly.
2. The probe stops functioning, but then re-activates as the batteries recharge sufficiently to provide the probe with power.
3. The probe begins to run through the LED review sequence (see page 4.2).
4. Again, the batteries discharge and the probe ceases to function.
5. Again, the batteries recharge sufficiently to provide the probe with power and the sequence repeats itself.
Contents

Cleaning ... 5.2
Service .. 5.2
Maintenance .. 5.2
Eyelid removal/replacement 5.3
Changing the batteries .. 5.4
Cleaning
Clean the window to maintain signal range.

![Cleaning image]

CAUTION: The OTS has a glass window. Handle with care if broken to avoid injury.

Service
You may undertake the maintenance routines described in these instructions.

Further dismantling and repair of Renishaw equipment is a highly specialised operation, which must be carried out at authorised Renishaw Service Centres.

Equipment requiring repair, overhaul or attention under warranty should be returned to your supplier.

![Service diagram]

4. The probe mechanism is protected by an outer metal eyelid seal and an inner flexible diaphragm seal.

 Approximately once a month, inspect the probe inner diaphragm seal. If it is pierced or damaged please contact Renishaw.

 The service interval may be extended or reduced depending on experience (see next page for inspection instructions).

Maintenance

The probe is a precision tool and must be handled with care.

Ensure the probe is firmly secured to its mounting.

The probe requires minimal maintenance as it is designed to operate as a permanent fixture on CNC machining centres, where it is subject to a hot chip and coolant environment.

1. Do not allow excessive waste material to build up around the probe.

2. Coolant residue accumulating on the transmission window will have a detrimental effect on transmission performance. Wipe clean as often as necessary to maintain unrestricted transmission.

 ![Probe module diagram]
Eyelid removal/replacement

1. Remove the stylus/break stem assembly using the 5 mm AF spanner.

2. Use a 24 mm or 15/16 in spanner to remove the probe's front cover. This will expose the metal eyelid seal, spring and the inner diaphragm seal. Remove the metal eyelid and spring. CAUTION – these may fall out.

3. Wash inside the probe, using clean coolant. (DO NOT use sharp metal objects to clean out debris).

4. Inspect the diaphragm seal for signs of piercing or damage. In the event of damage, return the probe to your supplier for repair, as coolant entering the probe mechanism could cause the probe to fail.

5. Refit the spring and metal eyelid (the spring's largest diameter is against the metal eyelid).

6. Refit the remaining components.
Changing the batteries

(Battery type: 1/2 AA Lithium Thionyl Chloride (3.6 V) x 2)

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecocel</td>
<td>EB 1425, EB1426</td>
</tr>
<tr>
<td>Saft</td>
<td>LS 14250 C, LS 14250</td>
</tr>
<tr>
<td>Sonnenschein</td>
<td>SL-750</td>
</tr>
<tr>
<td>Xeno</td>
<td>XL-050F</td>
</tr>
<tr>
<td>Dubilier</td>
<td>SB-AA02</td>
</tr>
<tr>
<td>Maxell</td>
<td>ER3S</td>
</tr>
<tr>
<td>Sanyo</td>
<td>CR 14250 SE</td>
</tr>
<tr>
<td>Sonnenschein</td>
<td>SL-350, SL-550</td>
</tr>
<tr>
<td>Tadiran</td>
<td>TL-4902 TL-5902, TL-2150, TL-5101</td>
</tr>
<tr>
<td>Varta</td>
<td>CR 1/2 AA</td>
</tr>
</tbody>
</table>

CAUTION

Do not leave exhausted batteries in the probe.

CAUTION

Please dispose of exhausted batteries in accordance with local regulations.

Do not dispose of batteries in a fire.

Installing the batteries

- Take care not to short the battery contacts as this may be a fire hazard. Ensure the contact strips are located securely.

When changing batteries, do not allow coolant or debris to enter the battery compartment.

When changing batteries, check that the polarity is correct.
Troubleshooting

Contents

Fault finding..6.2
Fault finding

- If in doubt, consult your probe supplier.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Probable cause</th>
<th>Remedial action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe fails to power up</td>
<td>Dead batteries</td>
<td>Change batteries.</td>
</tr>
<tr>
<td>(no LED illuminated, or fails to indicate</td>
<td>Wrong batteries</td>
<td>Change batteries</td>
</tr>
<tr>
<td>current probe settings)</td>
<td>Batteries inserted incorrectly</td>
<td>Check battery insertion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probe fails to switch-on</td>
<td>Wrong optical start mode selected</td>
<td>Reconfigure transmission mode</td>
</tr>
<tr>
<td></td>
<td>Dead batteries</td>
<td>Change batteries</td>
</tr>
<tr>
<td></td>
<td>Wrong batteries</td>
<td>Change batteries</td>
</tr>
<tr>
<td></td>
<td>Batteries inserted incorrectly</td>
<td>Check battery insertion</td>
</tr>
<tr>
<td></td>
<td>Optical/magnetic interference</td>
<td>Check for interfering lights or motors</td>
</tr>
<tr>
<td></td>
<td>Transmission beam obstructed</td>
<td>Consider removing interfering source</td>
</tr>
<tr>
<td></td>
<td>Probe out of range/not aligned with receiver</td>
<td>Check that probe and receiver windows are clean, and remove any obstruction</td>
</tr>
<tr>
<td></td>
<td>No receiver start signal</td>
<td>Check alignment and if receiver fixing is secure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to relevant user’s guide. Check connections and fuses</td>
</tr>
<tr>
<td>Probe turns on unexpectedly</td>
<td>Probe receiving turn-on signal from receiver on</td>
<td>Reduce turn-on range on receiver on adjacent machine</td>
</tr>
<tr>
<td></td>
<td>adjacent machine</td>
<td></td>
</tr>
<tr>
<td>Machine stops unexpectedly</td>
<td>Optical communication obstructed</td>
<td>Check interface/receiver and remove obstruction</td>
</tr>
<tr>
<td>during a probing cycle</td>
<td>Interface/receiver/machine fault</td>
<td>Refer to interface/receiver/machine User’s guide</td>
</tr>
<tr>
<td></td>
<td>Dead batteries</td>
<td>Change batteries</td>
</tr>
<tr>
<td></td>
<td>False probe trigger</td>
<td>Enable enhanced trigger filter</td>
</tr>
<tr>
<td></td>
<td>Probe unable to find target surface</td>
<td>Check that part is correctly positioned and that stylus has not broken</td>
</tr>
<tr>
<td></td>
<td>Adjacent probe</td>
<td>Reconfigure to low power mode and reduce range of receiver</td>
</tr>
<tr>
<td>Symptom</td>
<td>Probable cause</td>
<td>Remedial action</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Probe crashes</td>
<td>Tool length offset incorrect</td>
<td>Review offsets</td>
</tr>
<tr>
<td></td>
<td>Controller wired to respond to inspection probe instead of tool setter</td>
<td>Review installation wiring</td>
</tr>
<tr>
<td>Poor probe repeatability and/or</td>
<td>Debris on part or stylus</td>
<td>Clean tool and stylus</td>
</tr>
<tr>
<td>accuracy</td>
<td>Loose probe mounting on machine bed or loose stylus</td>
<td>Check and tighten as appropriate</td>
</tr>
<tr>
<td></td>
<td>Excessive machine vibration</td>
<td>Enable enhanced trigger filter</td>
</tr>
<tr>
<td></td>
<td>Calibration out of date and/or incorrect offsets</td>
<td>Eliminate vibrations</td>
</tr>
<tr>
<td></td>
<td>Calibration and probing speeds not the same</td>
<td>Review probing software</td>
</tr>
<tr>
<td></td>
<td>Measurement occurs as stylus leaves surface</td>
<td>Review probing software</td>
</tr>
<tr>
<td></td>
<td>Measurement occurs within the machine's acceleration and deceleration zone</td>
<td>Review probing software and probe filter settings</td>
</tr>
<tr>
<td></td>
<td>Probing speed too high</td>
<td>Perform simple repeatability trials at various speeds</td>
</tr>
<tr>
<td></td>
<td>Temperature variation causes machine and workpiece movement</td>
<td>Minimise temperature changes</td>
</tr>
<tr>
<td></td>
<td>Machine tool faulty</td>
<td>Perform health checks on machine</td>
</tr>
<tr>
<td>Probe fails to switch off</td>
<td>Optical/magnetic interference</td>
<td>Check for interfering lights or motors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consider removing the interfering source</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check position of receiver</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase receiver signal start range</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensure window is clean</td>
</tr>
<tr>
<td></td>
<td>Probe out of range</td>
<td>Review performance envelopes</td>
</tr>
</tbody>
</table>
This page left intentionally blank
Contents

OTS systems parts and accessories ... 7.2
OTS system parts and accessories

Please quote the part number when ordering equipment.

<table>
<thead>
<tr>
<th>Type</th>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTS</td>
<td>A-5401-2001</td>
<td>OTS probe with disc stylus, batteries, tool kit and User's guide (optical on/optical off, set to: filter off, Probe 2 start standard power)</td>
</tr>
<tr>
<td>Batteries</td>
<td>P-BT03-0007</td>
<td>1/2 AA batteries (pack of two)</td>
</tr>
<tr>
<td>Battery cap</td>
<td>A-5401-0301</td>
<td>OTS battery cap assembly.</td>
</tr>
<tr>
<td>Seal</td>
<td>A-4038-0301</td>
<td>Battery housing seal.</td>
</tr>
<tr>
<td>Break stem kit</td>
<td>A-5003-5171</td>
<td>Stylus protection kit comprising: break stem (x 1), captive link, grub screw flat ended (x 3), cap head screw (x 2), with tools (hexagon wrenches, spanner 5 mm AF, and support bar).</td>
</tr>
<tr>
<td>Stylus holder kit</td>
<td>A-2008-0389</td>
<td>Stylus holder kit comprising stylus holder and screws.</td>
</tr>
<tr>
<td>Disc stylus</td>
<td>A-2008-0382</td>
<td>Disc stylus Ø12.7 mm (Ø0.5 in), tungsten carbide, 75 Rockwell C.</td>
</tr>
<tr>
<td>Square stylus</td>
<td>A-2008-0384</td>
<td>Square tip stylus 19.05 mm (0.75 in), ceramic, 75 Rockwell C.</td>
</tr>
<tr>
<td>Mounting bracket</td>
<td>A-2033-0830</td>
<td>OMI-2T/OMI-2H/OMI-2 mounting bracket with fixing screws, washers and nuts</td>
</tr>
<tr>
<td>OMI-2T</td>
<td>A-5439-0049</td>
<td>OMI-2T complete with cable 8 m (26.25 ft) long</td>
</tr>
<tr>
<td>Quick start guide</td>
<td>A-5401-8500</td>
<td>Quick start guide for rapid set-up of the OTS probe</td>
</tr>
</tbody>
</table>

Publications

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe software</td>
<td>Software features Data sheet H-2000-2289</td>
<td></td>
</tr>
<tr>
<td>for machine tools</td>
<td>Software list Data sheet H-2000-2298</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styli</td>
<td>Styli and accessories Catalogue H-1000-3200</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Probe settings record table .. 8.2
Probe settings record table

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced trigger filter</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>ON</td>
</tr>
<tr>
<td>Probe identification</td>
<td>Probe 1</td>
</tr>
<tr>
<td></td>
<td>Probe 2</td>
</tr>
<tr>
<td>Optical power setting</td>
<td>Low power</td>
</tr>
<tr>
<td></td>
<td>Standard power</td>
</tr>
</tbody>
</table>

Probe settings record table

8.2

OTS serial no ..
Definition of probing terms

Contents

Definition of terms commonly associated with probing............. 9.2
Definition of terms commonly associated with probing

Accuracy
The closeness of agreement between the results of a measurement and the true value of the part being measured.

Repeatability
The variation in measurements obtained when multiple readings are taken with the same instrument and technique on the same part or item. In Renishaw terms, repeatability is the ability of a probe to trigger at the same point each time.

Calibration
The operation that identifies and corrects any deviation from the stated performance targets.

Probe calibration
Where a datum feature, of known size and position, is measured to establish the average pre-travel for the stylus concerned.

Datum
The reference feature from which other co-ordinates are measured.

Hysteresis
A systematic error arising from the difference in direction of a probing move resulting from the preceding reseat.

Kinematic seating
A seating mechanism in which the spatial position of a movable component is constrained in all 6 degrees of potential movement. This is achieved in a Renishaw probe by 6 contact points formed by a system of radial rollers (or ‘V’ grooves) and ball bearings.

Kinematic switching probe
A contact probe in which the kinematic seating forms an electrical circuit that is broken by the action of displacing the stylus, to provide the trigger signal. After displacement, the stylus ball returns to the highly repeatable position defined by the kinematic location points.

Lobing
The variation in trigger point position from a perfect spherical locus, as the direction of probing varies.

Overtravel
The distance travelled by the probe after the trigger point has been reached.

Pre-travel
The displacement from the point where the stylus ball contacts the workpiece, to the point where a probe trigger is asserted.

Pre-travel variation
The deviation of the pre-travel from its average value as it varies with trigger direction. This may be specified for 2D (X-Y) or 3D (X-Y-Z) measurements. Pre-travel itself is not a form of error, since it can easily be compensated for, by probe calibration.

Strain gauge probe
Although a strain gauge probe still uses a kinematic mechanism to retain the stylus, it does not use the resistance through the contact elements as the means to sense a trigger. Instead, a set of strain gauges are positioned on carefully designed webs within the probe structure, beyond the kinematics.

These gauges measure the contact force applied to the stylus and generate a trigger. This provides a low trigger force, low pre-travel and therefore low pre-travel variation.