

VIONIC™ RSLM20/RELM20 高精度線性光學尺系統

目錄

法律聲明	1	輸出訊號	15
存放和搬運	3	速度	16
VIONIC 讀頭安裝圖	4	電氣連接	17
量測長度	5	輸出規格	18
黏著劑固定安裝圖	6	一般規格	19
黏著劑固定安裝	7	RSLM20 光學尺技術規格	20
固定夾/鉗片固定安裝圖	8	參考原點	20
固定夾/鉗片固定安裝	9	限位開關	20
參考原點選擇器與限位磁鐵安裝	10	RELM20 光學尺技術規格	20
VIONIC 光學尺系統快速入門指南	11	參考原點	20
讀頭安裝與校正	12	限位開關	20
系統校準	13		
還原原廠預設值	14		
啟用/停用 AGC	14		

法律聲明

版權

© 2016-2021 Renishaw plc 保留所有權利。

未經Renishaw 事先書面同意,不得複製或再製本文件之一部或全部,或以任何方式轉移至任何其他媒體或語言。

商標

RENISHAW® 及測頭標誌為Renishaw plc 註冊商標。Renishaw 產品名稱、稱謂及其「apply innovation」標記為Renishaw plc 或其子公司註冊商標。

其他品牌、產品或公司名稱為各自所有者的商標。

專利

Renishaw 的光學尺系統及相似產品的功能係下列專利及專利申請之標的:

EP1173731	IL146001	JP4750998	US6775008	CN10054342
EP1766334	JP4932706	US7659992	CN100507454	JP5386081
US7550710	CN101300463	EP1946048	JP5017275	US7624513
CN101310165	EP1957943	US7839296	CN1314511	EP1469969
JP5002559	US8987633	US8466943		

免責條款

儘管本公司於發布本文件時已盡相當之努力驗證其正確性,於法律允許範圍內,本公司概不接納以任何方式 產牛之擔保、條件、聲明及賠償責任。

RENISHAW 保留對本文件及設備、和/或本文所述軟體及規格進行變更之權利,恕不另行通知。

保固

除非您與Renishaw 已同意並另外簽署書面協議,否則所售設備和/或軟體均受與該設備和/或軟體一同提供(或可向您當地Renishaw辦事處索取)之 Renishaw 標準條款和條件之約束。

若Renishaw 設備及軟體均按Renishaw 文件之規定予以安裝使用,則Renishaw 提供有限期限保固(如標準條款和條件所載)。 您應查閱該等標準條款和條件,瞭解保固之完整詳情。

您向第三方供應商購買之設備和/或軟體,受與該設備和/或軟體一同提供之個別條款和條件之約束。 您應職絡您的第三方供應商以瞭解詳情。

產品符合性

Renishaw plc 聲明,VIONiC™ 光學尺系統遵照適用的標準及相關法規。《歐盟符合性聲明書》可在以下網址取得:www.renishaw.com.tw/productcompliance

符合性

本裝置符合 FCC 規定第 15 條的要求。其操作會受限於以下兩個狀況:

(1) 本裝置不會造成有害干擾;(2) 本裝置必須接受任何接收到的干擾,包括可能造成意外操作的干擾。 使用者應該注意,任何未經 Renishaw plc 或其授權代表明確批准的變更或修改將導致使用者操作本裝置的 權利失效。

本設備根據 FCC 規則的第 15 條,經測試符合 Class A 數位裝置的限制。這些限制旨在提供合理保護,避免設備在商業環境中運轉時產生有害的干擾。本設備會產生、使用且可能放射無線電射頻能量,未依指示安裝和使用,可能會對無線電通訊造成有害干擾。在住宅區域操作本設備可能會導致有害的干擾,在此情況下,使用者將須自費矯正干擾。

附註:本單元已涌過周邊裝置屏蔽纜線之測試。本單元必須搭配屏蔽纜線使用,以確保符合性。

詳細資訊

如需與 VIONIC 光學尺範圍相關的詳細資訊,請前往 VIONIC 系列光學尺系統資料表(Renishaw 文件編號 L-9517-9704)、進階診斷工具 ADTi-100 資料表(Renishaw 文件編號 L-9517-9725)、進階診斷工具 ADTi-100 和 ADT 檢視軟體快速入門指南(Renishaw 文件編號 M-6195-9455),以及進階診斷工具 ADTi-100 和 ADT 檢視軟體使用指南(Renishaw 文件編號 M-6195-9420)。這些資料表可從本公司網站www.renishaw.com.tw/vionicdownloads下載,亦可向當地 Renishaw 業務代表索取。

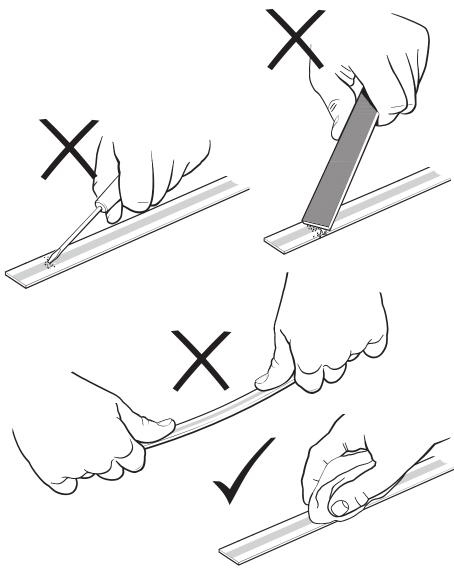
法律聲明 (繼續)

包裝

本公司產品包裝包含以下可回收的材料。

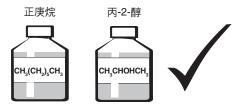
包裝組成	材料	ISO 11469	回收指導手冊
外箱	硬紙板	不適用	可回收
	聚丙烯	PP	可回收
隔板	低密度聚丙烯發泡棉	LDPE	可回收
	硬紙板	不適用	可回收
塑膠袋	高密度聚丙烯發泡棉	HDPE	可回收
	金屬化聚丙烯	PE	可回收

REACH 法規

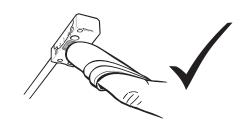

(EC) 1907/2006 號法規(「REACH」)第 33(1) 條含有高度關注物質 (Substances of Very High Concern, SVHC) 產品所要求的相關資訊,請參考官方網站: www.renishaw.com.tw/REACH

WEEE 回收指南

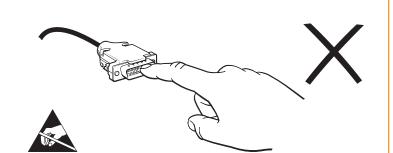
在 Renishaw 產品和/或隨附文件中使用本符號,表示本產品不可與普通家庭廢品混合棄置。 最終使用者有責任在指定的報廢電氣和電子設備 (WEEE) 收集點棄置本產品,以實現重新利 用或循環使用。正確棄置本產品有助於節省寶貴的資源,並防止對環境的消極影響。 如需更多資訊,請與您當地的廢品棄置服務或 Renishaw 代理商聯絡。


存放和搬運

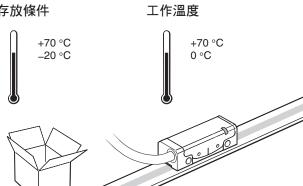
最小彎曲半徑 RSLM20 – 250 mm RELM20 - 請勿彎曲

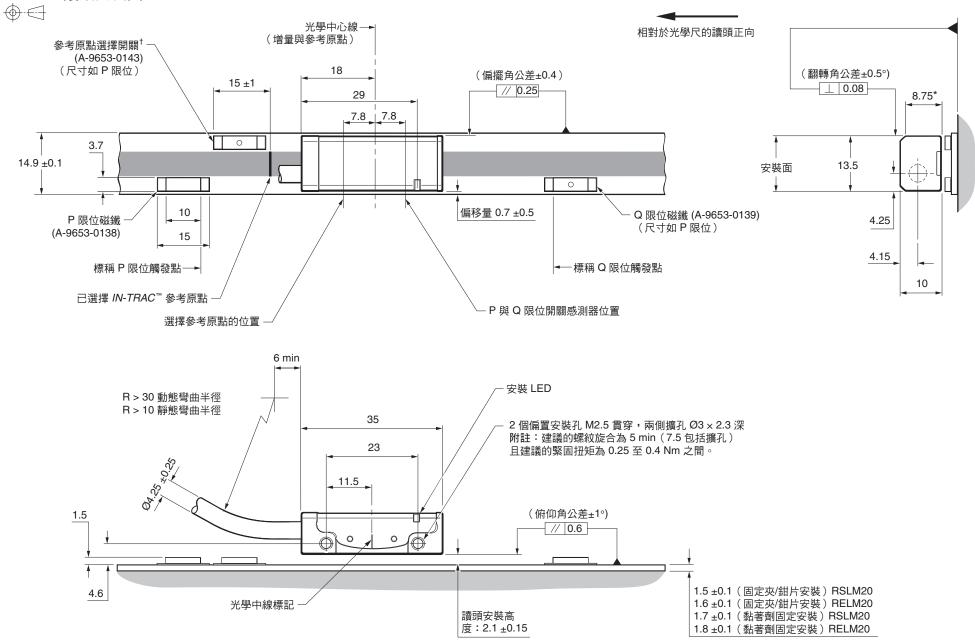

附註:確保自黏膠帶位於彎曲 外側。

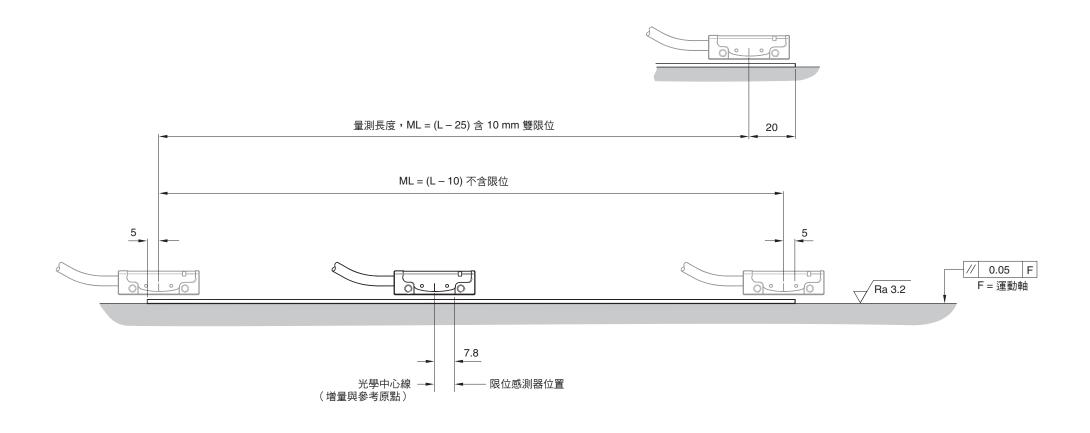
光學尺與讀頭

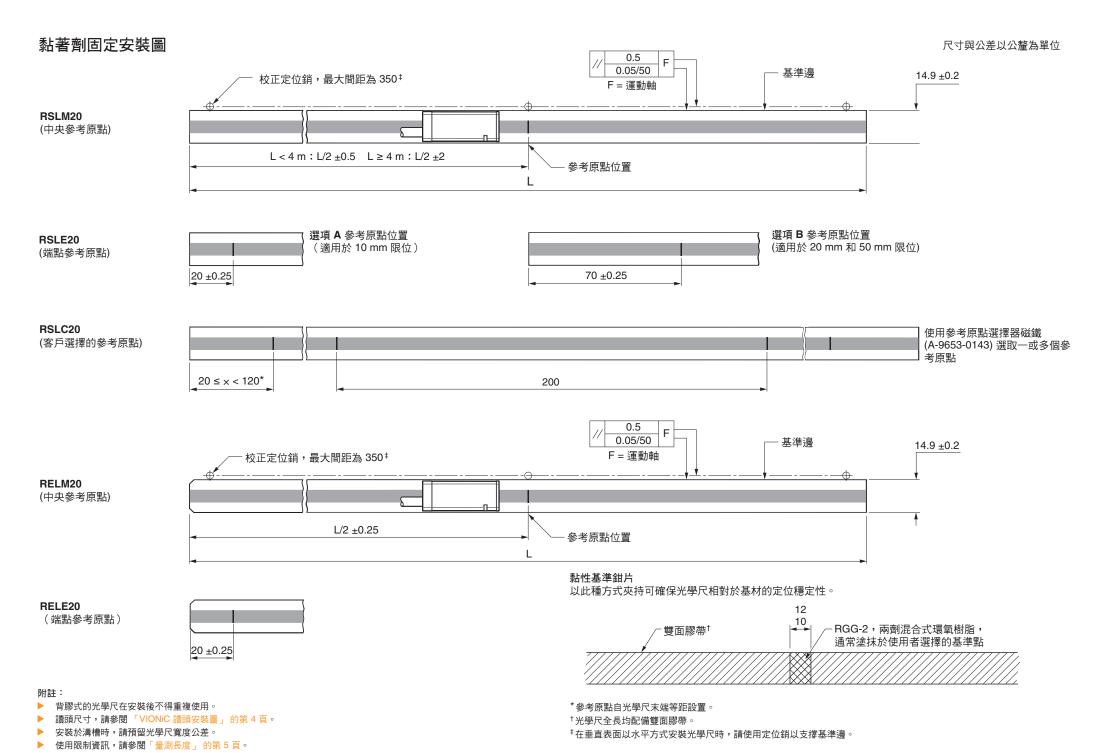


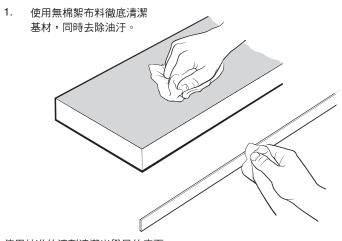
僅讀頭

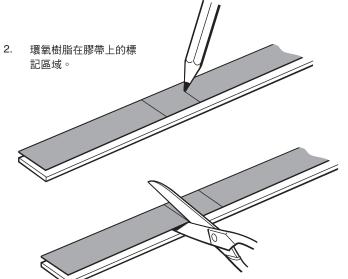


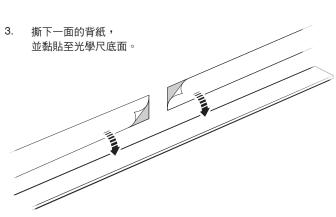


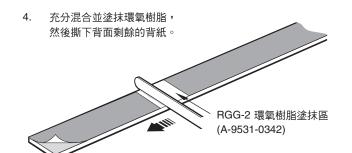


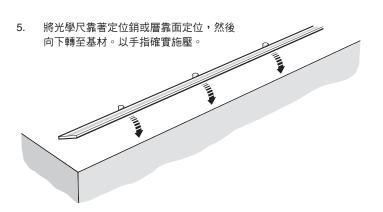

VIONIC 讀頭安裝圖

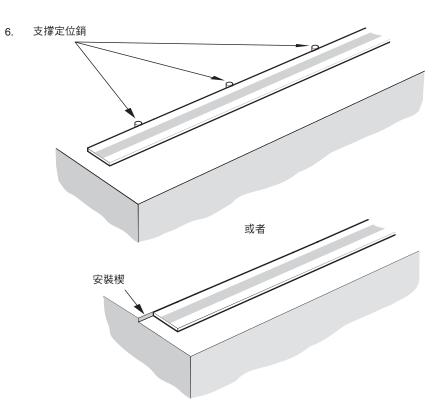

^{*}安裝面的範圍。 [†]只有 RSLC20 光學尺需要參考源點選擇器。

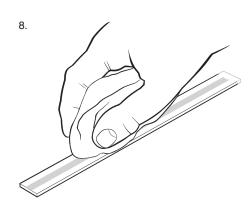

附註:圖示為正確的參考原點選擇器與限位致動器位置相對於讀頭方向。 讀頭周圍的外部磁場如果大於 6 mT,可能會造成錯誤啟動限位和參考感測器。

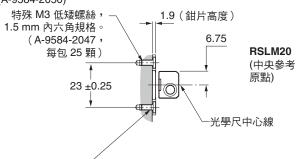



黏著劑固定安裝



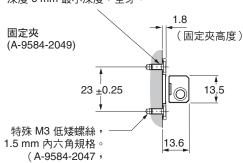



使用核准的溶劑清潔光學尺的底面, (「存放和搬運」3頁)。



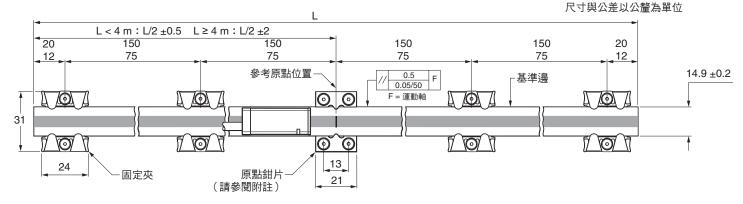
將環氧樹脂靜置 24 小時,使其充分固化,然後 使用 Renishaw 光學尺擦拭布 (A-9523-4040) 或 乾淨的無棉絮布料清潔光學尺。

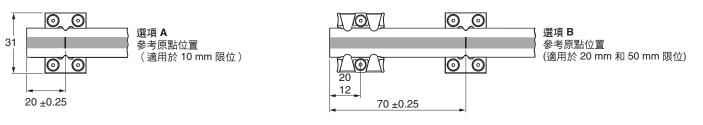
固定夾/鉗片固定安裝圖

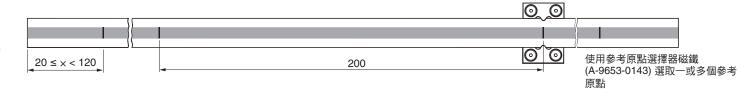

基準鉗片

(A-9584-2050)

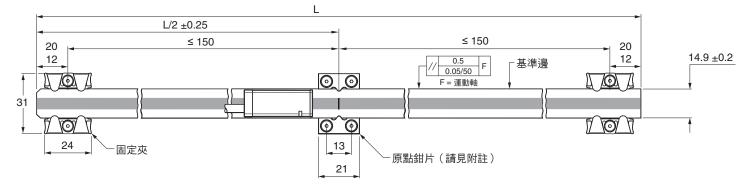
兩側擴孔安裝孔全部 3.2 mm 直徑 1 mm 至 1.5 mm 深度 6 mm 最小深度,全牙。

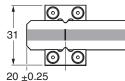

每句, 25 顆)




RSLE20

(端點參考 原點)

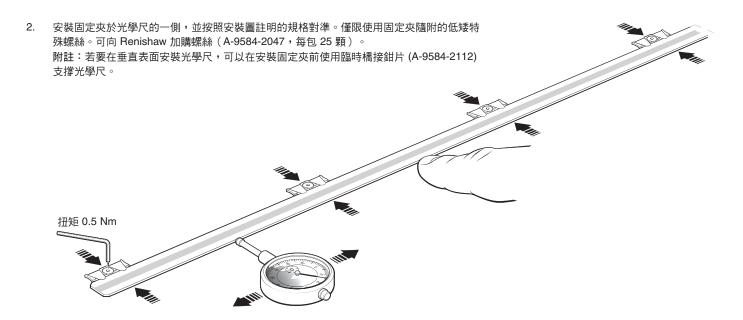



附註:

- ▶ 基準鉗片通常會與選取的 IN-TRAC 參考源點一 致。 不過,實際位置仍可依應用需求,由使用 者自行調整。
- ▶ 若長度介於 80 (≤) 及 190 (≤) 之間,請務必使 用固定夾或鉗片固定光學尺中央及兩端。
- 為發揮最佳效能,讀頭應盡可能依標準幾何位 置安裝。
- ▶ 請留意,讀頭/固定支架和固定夾/原點鉗片之間 應保持充足的距離。
- 僅限使用低高度的特殊螺絲。所有固定夾/基準 鉗片均隨附螺絲,如有需要可額外索取。
 - *省略固定夾,以求清晰呈現。參考原點自光學 尺末端等距設置。

RELM20 (中央參考 原點)

RELE20 (端點參考 原點)



固定夾/鉗片固定安裝

1. 使用無棉絮布料徹底清潔 基材,同時去除油汙。

使用核准的溶劑清潔光學尺的底面 (「存放和搬運」3頁)。

3. 使用固定夾設置薄墊片 M-9584-0928 (隨附於 A-9584-2050 鉗片組) 安裝剩餘固定夾。

扭矩 0.5 Nm

VIONiC RSLM20/RELM20 安裝指南 9

4. 使用隨附的特殊 M3 低矮螺絲,

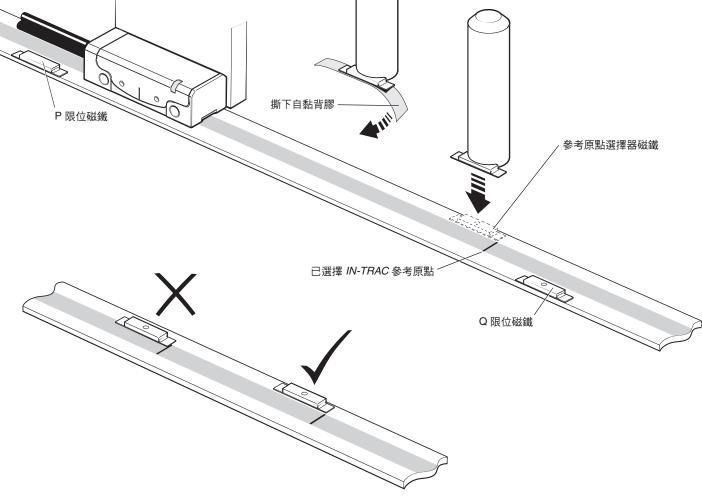
將基準鉗片抵住並固定光學尺。

參考原點選擇器與限位磁鐵安裝

為了準確和便於定位參考原點選擇器與極限磁鐵,應該使用治具 (A-9653-0201)。磁鐵應該被吸附至治具工具 上,如下所示。

限位磁鐵可置於沿著光學尺旁的任何使用者定義位置,但是參考原點選擇器磁鐵應該置於選擇的 IN-TRAC 參 考原點附近,如下所示。

當 VIONiC 讀頭經過參考原點選擇器磁鐵或極限開關磁鐵時,讀頭上的磁鐵與集中器之間產生的作用力最大為 0.2 N。支架的設計應足夠堅固,以便能承受此作用力而不扭曲。遵循光學尺安裝上的夾持指示,可避免此磁 力扭曲光學尺。


讀頭限位開關感測器經過限位磁鐵前緣時,會產生限位輸出, 但可以在該邊緣前最多 3 mm 處觸發 (「VIONiC 讀頭安裝圖」

附註:

4百)。

限位觸發點

- ▶ 只有 RSLC20 光學尺需要參考源點選擇器磁鐵。
- ┢ 當磁性材料靠近時,參考和限位磁鐵可能會位移。在這種情 況下,應該使用額外的環氧膠填角或類似物,將磁鐵組件的 各端點固定就位。
- ▶ 圖示為正確的參考原點選擇器與限位致動器位置相對於讀頭 安裝。
- ▶ 當客戶選用讀頭需使用參考原點時,這時就需要搭配選用原點 磁鐵使用。若需更多的資訊請參考VIONIC系列的編碼器資料 表(Renishaw part no. L-9517-9704)。
- ▶ 讀頭周圍的外部磁場如果大於 6mT,可能會造成錯誤啟動限 位和參考感測器。

治具工具 (A-9653-0201)

VIONIC 光學尺系統快速入門指南

本節是安裝 VIONiC 光學尺系統的快速入門指南。

關於安裝系統的更多詳細資訊,請參閱本安裝指南的 12 頁和 13 頁。

可使用選購的進階診斷工具 ADTi-100* (A-6165-0100) 和 ADT 檢視軟體[†] 以協助安裝和校準。

安裝

確保光學尺、讀頭光學視窗及安裝面皆乾淨,無障礙。

如有需要,請確保參考原點選擇器磁鐵已正確定位 (「VIONIC 讀頭安裝圖」 4頁)。

將讀頭連接到接收電子端並開啟電源。讀頭上的設定 LED 將閃爍。

安裝並對準讀頭,使LED 閃爍綠色表示整條行程軸線訊號強度達到最大。

校準

重新啟動讀頭電源以啟動校準程序。LED 將單閃藍色。

以慢速 (< 100 mm/s) 沿著光學尺移動讀頭,且未超過參考原點,直到 LED 開始雙閃藍色。

無參考原點

參考原點

如果未使用參考原點,應該藉由重新啟動電源的方式退出校準程序。 LED 將停止閃爍。 前後移動讀頭越過選取的參考原點,直至讀頭設定 LED 停止閃爍。

系統現已校準完成,已可準備使用。校準值、自動增益控制 (AGC) 和自動偏置控制 (AOC) 狀態,會在電源關閉時儲存在讀頭非揮發性記憶體中。 附註:如果校準失敗,可先遮擋讀頭光學視窗再開啟電源以還原原廠預設值 (14 頁)。重複安裝與校準程序。

> *如需詳細資訊,請參閱進階診斷工具 *ADTi-100* 和 *ADT* 檢視軟體快速入門指南(Renishaw 文件編號 M-6195-9455)以及 進階診斷工具 *ADTi-100* 和 *ADT* 檢視軟體使用指南(Renishaw 文件編號 M-6195-9420)。 †此軟體可透過以下網址免費下載: www.renishaw.com.tw/adt

讀頭安裝與校正

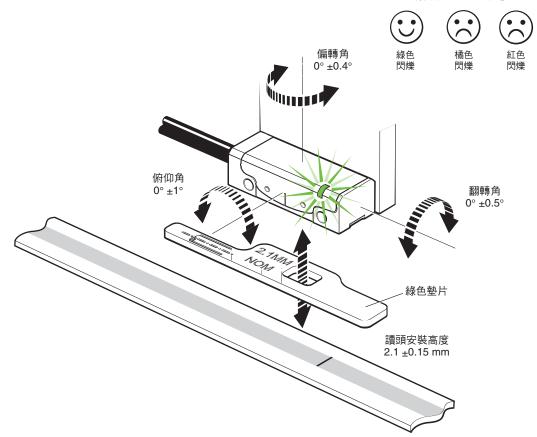
固定托架

托架必須擁有平坦的安裝表面,並且應該提供調整裕度以符合安裝公差,方便讀頭安裝高度調整並具足夠的剛性,以防讀頭在運作時出現偏轉或振動。

讀頭設定

確保光學尺、讀頭光學視窗及安裝面皆乾淨,無障礙。

附註:清潔讀頭和光學尺時可使用少量清潔液;請勿浸泡。


若要設定標稱讀頭高度,請將綠色墊片放置在讀頭的光學中心下方,以便在設定過程中讓 LED 可正常運作。調整讀頭,讓 LED 沿著整條行程軸線閃爍綠色。閃爍速度越快,越接近最佳設定。可使用選購的進階診斷工具 ADTi-100* (A-6195-0100) 和 ADT 檢視軟體,在具挑戰性的安裝環境中,使訊號強度處於最佳狀態。請參閱 www.renishaw.com.tw/adt,以取得更多資訊。

附註:重新安裝讀頭時,應將其還原為原廠預設值 (14 頁)。

讀頭 LED 診斷

模式	LED	狀態
安裝模式	綠燈閃爍	設定正確,最佳狀態的設定會出現最高閃爍率
	橘燈閃爍	設定不良,調整讀頭,讓 LED 閃爍綠燈
	紅燈閃爍	設定不良,調整讀頭,讓 LED 閃爍綠燈
校準模式	單閃藍色	校準增量信號
	雙閃藍色	校準參考原點
操作正常	藍色	AGC 開啟,最佳設定
	綠色	AGC 關閉,最佳設置
	紅色	設定不良;訊號可能過低而無法可靠運作
	不可見閃爍	已檢測出參考原點(可見指示速度僅 < 100 mm/s)
警報	紅燈閃爍 4 次	訊號太弱、訊號過強或超速;系統錯誤

讀頭設定 LED 狀態

系統校準

附註:您也可以透過選購的 ADTi-100 和 ADT 檢視軟體使用以下所述的功能。請參閱www.renishaw.com.tw/adt,以取得更多資訊。

確保沿著整條行程軸的訊號強度已最佳化,則 LED 將閃爍綠色。重新啟動讀頭電源或將「遠端 CAL」輸出針腳連接至 0 V,時間為 3 秒以內。接著讀頭將會單閃藍色,表示正處於校準模式,

詳細資料請參閱「<mark>讀頭安裝與校正」 的第 12 頁</mark>。只有在LED 閃爍綠色時,讀頭才會進入校準模式。

步驟 1 - 增量信號校準

- 以慢速(<100 mm/s,或小於讀頭最大速度,選擇速度較慢者)沿著軸移動讀頭,確保其未超過參考原點,直到 LED 開始雙閃,表示增量訊號現已校準完成,且新設定儲存於讀頭記憶體內。
- 系統已準備好進行參考原點定相。對於沒有參考原點的系統,請重新啟動讀頭,或將「遠端 CAL」輸出 針腳連接到 0 V 3 秒以內,以結束校準模式。
- 若系統未自動進入參考原點定相階段(LED 持續單閃),表示增量訊號校準失敗。在確定不是因超速 (>100 mm/s,或超過讀頭最大速度)而失敗後,請結束校準程序、回復原廠預設值(詳情如下),然 後在重新進行校準程序前先檢查讀頭安裝與系統清潔度。

步驟 2 - 參考原點定相

- 前後移動讀頭越過選取的參考原點,直至讀頭設定 LED 停止閃爍並維持恒亮藍燈(如 AGC 已停用,則 為綠燈)。參考原點現已定相。
- 系統自動結束校準程序,並準備運轉。
- ▶ AGC和AOC為在校驗程序完成後自動開。若要關閉 AGC,請參閱「啟用/停用 AGC」 的第 14 頁。
- 如果 LED 在重複經過所選參考原點後繼續雙門,表示沒有偵測到。
 - 請務必使用正確的讀頭配置。根據訂購時選擇的選項,讀頭可以輸出所有參考原點,也可以僅輸出已 安裝參考選擇器磁鐵的參考原點。
 - 檢查參考原點選擇器磁鐵是否安裝在相對於讀頭方向的正確位置,(「VIONIC 讀頭安裝圖」 4頁)。

手動結束校準程序

若要在任何階段結束校準程序,請重新啟動讀頭,或將「遠端 CAL」輸出針腳連接到 0 V,時間為 3 秒以內。然後,LED 將停止閃爍。

LED	設定已儲存
單閃藍色	無,還原原廠預設值和重新校準
雙閃藍色	僅增量
藍色 (自動完成)	增量與參考原點

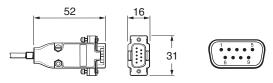
還原原廠預設值

重新安裝系統時,或者如果持續校準失敗,應還原原廠預設值。

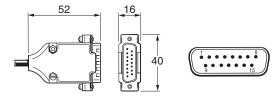
還原原廠預設值:

- 關閉系統。
- ▶ 遮擋讀頭光學視窗(使用讀頭隨附的墊片,確保墊片缺口「不」在光學視窗下),或將「遠端 CAL」輸出 針腳連接到 0 V。
- 啟動讀頭電源。
- ▶ 取出墊片,或者將「遠端 CAL」輸出針腳連接到 0 V(如果使用的話)。
- ▶ LED 會開始持續閃爍,表示已還原原廠預設值,而且讀頭處於安裝模式(閃爍設定 LED)。
- ▶ 重複 12 頁的「讀頭設定」程序。

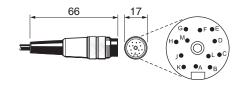
啟用/停用 AGC

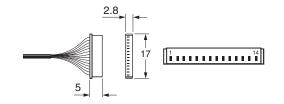

系統校準後會開啟 AGC(以藍色 LED 指示)。藉由將「遠端 CAL」輸出針腳連接到 $0\ V$,時間為 $3\$ 秒到 $10\$ 秒之間,即可手動關閉 AGC。然後,LED 會恆亮綠燈。

輸出訊號


數位輸出

功能	訊	號	顏色	9 向 D 型 (A)	15 向 D 型 (D)	15 向 D 型 (替代腳位配置) (H)	12 向圓形連接器 [†] (X)	14向JST [‡] (J)
電源	5	V	棕色	5	7、8	4 \ 12	G	10
	0	V	白色	1	2 \ 9	2 \ 10	Н	1
增量式	Α	+	紅色	2	14	1	М	7
	A	_	藍色	6	6	9	L	2
	В	+	黃色	4	13	3	J	11
	Ь	_	綠色	8	5	11	K	9
參考原點	Z	+	紫色	3	12	14	D	8
		_	灰色	7	4	7	E	12
限制	F	-	粉紅色	-	11	8	А	14
	(Q	黑色	-	10	6	В	13
警報	Е	_	橘色	-	3	13	F	3
遠端 CAL*	C	AL	透明	9	1	5	С	4
遮蔽		-	屏蔽	個案	個案	個案	個案	金屬環


9向 D型連接器(端子代碼 A)


15向 D型連接器(端子代碼 D、H)

12向串聯圓形連接器(端子代碼 X)

14向 JST 連接器(端子代碼 J)‡

A-9417-0025 - 底部安裝;

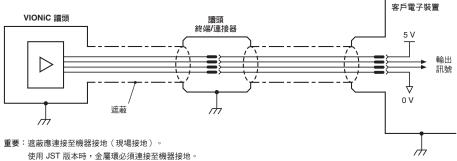
A-9417-0026 側邊安裝。

JST的接頭最多插入次數為20次。

^{*}遠端CAL接線必需確實連接當使用ADTi-100時。

^{†12}向出線的圓型配合插座 - A-6195-0105。

[‡]寬度5的14向JST SH配合插座:

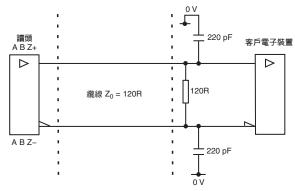

速度

時脈輸 出選項	最高速度 (m/s)								最小邊緣區隔*				
(MHz)	5 μm (D)	1 μm (X)	0.5 μm (Z)	0.2 μm (W)	0.1 μm (Y)	50 nm (H)	40 nm (M)	25 nm (P)	20 nm (l)	10 nm (O)	5 nm (Q)	2.5 nm (R)	(ns)
50	12	12	12	7.25	3.63	1.81	1.45	0.906	0.725	0.363	0.181	0.091	25.3
40	12	12	12	5.80	2.90	1.45	1.16	0.725	0.580	0.290	0.145	0.073	31.8
25	12	12	9.06	3.63	1.81	0.906	0.725	0.453	0.363	0.181	0.091	0.045	51.2
20	12	12	8.06	3.22	1.61	0.806	0.645	0.403	0.322	0.161	0.081	0.040	57.7
12	12	10.36	5.18	2.07	1.04	0.518	0.414	0.259	0.207	0.104	0.052	0.026	90.2
10	12	8.53	4.27	1.71	0.850	0.427	0.341	0.213	0.171	0.085	0.043	0.021	110
08	12	6.91	3.45	1.38	0.690	0.345	0.276	0.173	0.138	0.069	0.035	0.017	136
06	12	5.37	2.69	1.07	0.540	0.269	0.215	0.134	0.107	0.054	0.027	0.013	175
04	12	3.63	1.81	0.730	0.360	0.181	0.145	0.091	0.073	0.036	0.018	0.009	259
01	4.53	0.910	0.450	0.180	0.090	0.045	0.036	0.023	0.018	0.009	0.005	0.002	1038

^{*}用於具有 1 公尺纜線的讀頭。

電氣連接

接地與遮蔽


讀頭纜線長度上限:3 m

延長線最大長度:取決於纜線類型、讀頭纜線長度和時脈速度。

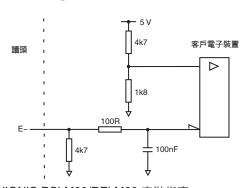
請與當地 Renishaw 代表聯絡,以瞭解更多資訊。

附註: 讀頭和ADTi-100之間的最大纜線長度為3m。

建議的訊號端接

限位輸出

(不適用於「A」纜線終端)



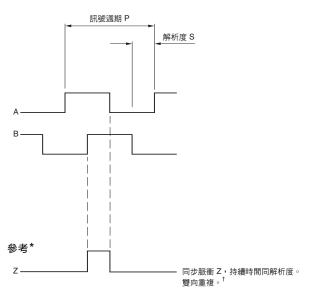
*選擇 R 使最大電流不超過 10 mA。 或者,使用適合的繼電器或光隔離器。

標準 RS422A 線路接收器電路。 建議用於提升抗雜訊能力的電容。

單端警報訊號端接

(不適用於「A」纜線終端)

遠端 CAL 工作

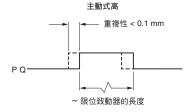

可透過 CAL 信號遠端操作 CAL/AGC。

輸出規格

數位輸出訊號

波形 - 方波差動線路驅動器至 EIA RS422A (限位 P 與 Q 除外)

增量* 2 通道 A 與 B 正交 (90° 相移)



解析度選項代碼	P (µm)	S (μm)
D	20	5
x	4	1
Z	2	0.5
W	0.8	0.2
Υ	0.4	0.1
Н	0.2	0.05
М	0.16	0.04
Р	0.1	0.025
T I	0.08	0.02
0	0.04	0.01
Q	0.02	0.005
R	0.01	0.0025

附註:提供寬廣的參考原點選項, 以在訊號週期的持續時間內輸出參考脈衝。 請與當地 Renishaw 代表聯絡,以瞭解更多資訊。

限位 開啟集極輸出,非同步脈衝

(不適用於「A」纜線終端)

警報

線路驅動 (非同步脈衝)

(不適用於「A」纜線終端)

或 3 狀態警報

警報條件有效時,差動傳輸訊號強制開路 > 15 ms。

*為了清楚表示,圖中未顯示反相訊號。

†唯有校驗過的參考原點具有雙向重覆性。

VIONIC RSLM20/RELM20 安裝指南

18

一般規格

電源	5 V -5%/+10%	標準 200 mA 完全端接 來自於 5 Vdc 電源的電力,符合標準 IEC-60950-1 的 SELV 需求
	漣波	頻率高達 500 kHz 時最大可達 200 mVpp
溫度	存放條件	–20 °C 至 +70 °C
	工作溫度	0 °C 至 +70 °C
濕度		95% 相對濕度(未凝結),符合 IEC 60068-2-78
防護等級		IP40
加速度(系統)	工作溫度	400 m/s²,3 軸
衝擊(系統)	工作溫度	500 m/s²、11 ms、½ 正弦、3 軸
振動(系統)	工作溫度	於 55 Hz 至 2000 Hz 範圍達到最高速 100 m/s², 3 軸
質量	讀頭	8.6 g
	纜線	26 g/m
讀頭纜線		單屏蔽,外徑為 4.25 ±0.25 mm
		彎曲半徑為 30 mm 時,撓曲壽命大於 20×10^6 個循環
		UL 認可組件 知 。
讀頭纜線長度上限*		3 m

 $^{^{*}}$ 可使用延長線。聯絡當地 Renishaw 代表,瞭解詳細資訊。

注意:Renishaw 編碼器系統已根據相關 EMC 標準設計,但必須正確整合,才可達到 EMC 符合性。 必須特別注意遮蔽配置。

RSLM20 光學尺技術規格

外型尺寸(高×寬)	1.5 mm × 14.9 mm
俯仰角	20 μm
精度 (20 °C 時)	長度達 1 m 時 ±1.5 μm
	長度介於 1 m 至 2 m 時 \pm 2.25 μ m
	長度介於 2 m 至 3 m 時 \pm 3 μ m
	長度介於 3 m 至 5 m 時 ± 4 μ m
	(包含斜率與線性度)
	校準可追溯至國際標準
供應長度	20 mm 至 5 m(多種尺寸可供挑選,以 10 mm 為一級距)
材料	硬化麻田散體不鏽鋼
熱膨脹係數(20 °C 時)	10.1 ±2 μm/m/°C
固定	環氧樹脂基準點與黏式膠帶 (標稱厚度為 0.2 mm),或使用基 準鉗片與固定夾
質量	172 g/m
存放條件	長度超過 1.13 m 時可捲起(直徑 > 600 mm)

參考原點

類型	IN-TRAC 自	IN-TRAC 自動相位選擇參考原點,無須實際調整					
位置	RSLM20	光學尺長度中點					
	RSLE20	(選項 A)- 距離光學尺末端 20 mm(搭配 10 mm 限位使用)					
	RSLE20	(選項B) – 距離光學尺末端 70 mm (搭配 20 mm 和 50 mm 限位使用)					
	RSLC20	每 200 mm 有參考原點可供選擇					
定相	以讀頭校準	以讀頭校準程序自動校準相位					
重複性	可在指定溫原	可在指定温度範圍中,重現至解析度單位					

限位開關

類型	磁性致動器;搭配凸點觸發 Q 限位,無凸點觸發 P 限位 (「VIONiC 讀頭安裝圖」 4頁)
觸發點	讀頭限位開關感測器經過限位磁鐵前緣時,會產生限位輸出,但可以在該邊緣前最多 3 mm 處觸發
固定	由客戶置於需要的位置
可重複性	< 0.1 mm

RELM20 光學尺技術規格

	環氧樹脂基準點與黏式膠帶 (標稱厚度為 0.2 mm),或使用 基準鉗片與固定夾
固定	
熱膨脹係數 (20 °C 時)	0.75 ±0.35 μm/m/°C
材料	ZeroMet™。高穩定性、低膨脹係數鎳鐵合金
供應長度	20 mm 至 1.5 m(多種尺寸可供挑選,以 10 mm 為一級距)
精度(20°C時) (包含斜率與線性度)	驗證為長度達 1 m 時,精度最高可達 $\pm 1 \mu \text{m}$; 長度介於 1m 至 1.5 m 時,精度最高可達 $\pm 1 \mu \text{m}/\text{m}$ 校準可追溯至國際標準
俯仰角	20 μm
外型尺寸(高×寬)	1.6 mm × 14.9 mm

參考原點

類型	IN-TRAC 自動相位選擇參考原點,無須實際調整	
位置	RELM20	光學尺長度中點
	RELE20	距離光學尺末端 20 mm
定相	以讀頭校準程序自動校準相位	
重複性	可在指定溫度範圍中,重現至解析度單位	

限位開關

類型	磁性致動器;搭配凸點觸發 Q 限位,無凸點觸發 P 限位 (「VIONIC 讀頭安裝圖」 4頁)
觸發點	讀頭限位開關感測器經過限位磁鐵前緣時,會產生限位輸出,但可以在該邊緣前最多 3 mm 處觸發
固定	由客戶置於需要的位置
可重複性	< 0.1 mm

Renishaw Taiwan Inc

40852台中市南屯區 精科七路2號2樓 T +886 4 2460 3799

F +886 4 2460 3798

E taiwan@renishaw.com

www.renishaw.com.tw

有關全球聯繫之相關資訊,請上網站 www.renishaw.com.tw/contact

M - 6195 - 9465 - 03

文件編號: M-6195-9465-03-D

發佈日期:07.2021