

XCal-View 사용 설명서

XCal-View 소개

XCal-View 정보

Renishaw XCal-View 소프트웨어는 Laser10, LaserXL 및 RotaryXL 소프트웨어 패키지의 일부로 통합되어 제공된 이전 분석 패키지를 대체하도록 만들어진 것입니다.

XCal-View 분석 소프트웨어는 Laser10, LaserXL 및 RotaryXL 소프트웨어에서 캡처한 리니어, 앵귤러 및 직진도 출력 파일을 지원합니 다.

XCal-View는 데이터 파일 비교, 고객 보고서 작성, 일반 오차 보정 파일 생성, 데이터 세트의 제로 오차 지점 이동 등 이전 Renishaw 분석 소프트웨어보다 더 많은 기능을 가지고 있습니다. 이러한 기능 모두 전혀 새로운 사용자 인터페이스를 통해 제공됩니다.

책임 부인

RENISHAW는 출판일 당시 본 설명서에 수록된 정보의 정확성에 만전을 기했지만 내용과 관련하여 어떠한 보증이나 주장도 하지 않습 니다. RENISHAW는 어떠한 상황에서도 본 안내서의 부정확성에 대하여 어떠한 책임도 지지 않습니다.

Renishaw는 이 온라인 설명서의 내용과 해당 제품을 예고 없이 변경할 권리가 있습니다.

저작권

Copyright ©2014 Renishaw. All rights reserved.

Renishaw의 사전 서면 동의 없이는 어떠한 방법으로도 이 도움말 설명서의 일부 또는 전부를 복사 또는 복제하거나 다른 매체나 언어로 전송할 수 없습니다.

본 문서에 실린 모든 자료는 Renishaw plc의 특허권 아래에 있습니다.

상표

RENISHAW 로고에 사용된 RENISHAW와 프로브 엠블럼은 영국과 기타 국가에서 Renishaw plc의 등록 상표입니다. apply innovation과 레니쇼 제품 및 기술에 적용된 명칭은 Renishaw Plc 및 지사의 등록 상표입니다.

Windows®는 미국 및/또는 기타 국가에서 Microsoft Corporation의 등록 상표입니다.

Adobe®와 Reader®는 미국과 기타 국가에서 Adobe Systems Incorporated의 상표 또는 등록 상표입니다.

이 문서에 사용된 모든 상표 이름과 제품 이름은 해당 소유주의 상호, 상표 또는 등록 상표입니다.

PC 요구 사항

최신 최소 PC 사양은 Renishaw 웹사이트의 XL-80 캘리브레이션 소프트웨어 페이지에서 확인하십시오.

Renishaw Analysis의 추가 기능

XCal-View 소프트웨어의 주요 기능

XCal-View는 현재의 Renishaw Analysis 소프트웨어에 포함되어 있지 않은 다음과 같은 추가 기능을 가지고 있습니다.

기능	Renishaw Analysis	XCal-View
'영점 이동' 기능	х	~
'일반' 오차 보정	\checkmark	~
'비교 테스트' 기능	х	~
PDF 보고 및 인쇄	х	~
플롯 상호 작용(선택 항목 이동, 확대/축소 등)	х	~
보고서 사용자 지정(로고 추가 등)	х	~

지원되는 분석 표준

다음 국가 및 국제 표준에 따라 데이터 세트를 분석할 수 있습니다.

ASME 5.54 1992 ASME 5.54 2005 GB 17421.2 2000 ISO 230-2 1997 ISO 230-2 2006 ISO 230-6 2006 JIS B 6192 1999 JIS B 6190-2 2008 VDI 3441 1977 VDI 2617 1989

이전에 Renishaw 소프트웨어에서 지원되었지만 XCal-View에서는 지원되지 않는 다른 표준은 'Renishaw analysis'를 사용해서 볼 수 있 습니다. 이 도구는 <u>www.renishaw.com/lasercalsupport</u>에서 다운로드할 수 있습니다.

이러한 표준의 대안으로 Renishaw에서는 사용된 데이터 세트의 유연성을 높여주는 포괄적인 자체 보고서 형식(즉, Renishaw 2012)도 제공합니다.

XCal-View 소프트웨어 설치

CD의 설치 마법사를 따르십시오.

소프트웨어가 시작 메뉴(아래 참조)와 바탕 화면에 바로 가기를 설치합니다.

XCal-View 소프트웨어를 설치하려면

1. 컴퓨터 전원을 켜고 잠시 후 Windows가 부팅되면 CD-ROM 디스크를 CD 드라이브에 넣습니다. 그러면 설치 프로그램이 자동으로 실 행됩니다. 설치 프로그램이 자동으로 실행되지 않으면 컴퓨터의 작업 표시줄에서 '시작/실행'을 선택하여 '실행' 대화 상자에 액세스하십 시오. '찾아보기' 버튼을 클릭하여 '찾아보기' 대화 상자를 통해 설치 CD-ROM 디스크에서 Setup.exe 파일에 액세스합니다. Setup.exe를 두 번 클릭합니다. 이제 '실행' 대화 상자에서 '확인'을 선택하여 소프트웨어 설치 프로세스를 시작합니다.

2. 이 마법사는 설치 과정을 단계별로 안내하는 대화 상자를 자동으로 엽니다. 각 화면의 지침을 따른 후 '다음'을 클릭하여 다음 단계로 진행합니다. 설치 프로그램을 종료하려면 '취소'를 클릭하십시오.

XCal-View 소프트웨어 실행

컴퓨터 전원을 켜고 Windows가 부팅되기를 기다립니다.

Windows 작업 표시줄에서 시작 버튼을 클릭한 다음 모든 프로그램 / Renishaw XCal-View 메뉴에서 XCal-View 응용 프로그램을 선택합니다.

또한 LaserXL, Laser10 또는 RotaryXL 내에서 분석 버튼을 선택하고 지원되는 측정 옵션(예: 리니어, 앵귤러, 직진도, 직각도) 중 하나에 대한 데이터 파일을 선택하여 XCal-View에 액세스할 수도 있습니다.

소프트웨어 활성화

활성화 옵션

XCal-View를 사용하려면 먼저 활성화해야 합니다. 활성화 도구는 소프트웨어 화면의 오른쪽 하단에 있는 🌌 버튼을 사용해서 실행할 수 있습니다.

다음 두 가지 옵션을 사용할 수 있습니다.

a) 30일 평가

이 옵션을 사용하면 Renishaw XCal-View 소프트웨어의 30일 평가 기간이 제공됩니다. 이 기간 동안에는 기능상의 제한 없이 풀 버전과 동일한 기능을 사용할 수 있습니다.

주: 30일 간의 평가를 활성화하고 그 기간이 끝나면 이 옵션을 더 이상 사용할 수 없습니다.

b) 소프트웨어 활성화

이 옵션은 정식 버전 소프트웨어를 구매했고 소프트웨어를 활성화하는 데 필요한 키를 가지고 있는 경우에만 사용할 수 있습니다.

소프트웨어를 활성화하고 난 후 🌌 버튼을 사용하면 다음 옵션이 표시됩니다.

소프트웨어 비활성화

이 옵션을 사용하면 Renishaw XCal-View 소프트웨어를 구매한 사용자가 소프트웨어를 비활성화한 후 다른 PC에서 다시 활성화할 수 있습니다.

소프트웨어 등록

처음 소프트웨어를 활성화할 때 등록 정보를 묻는 메시지가 표시됩니다. 등록 정보를 작성하고 'register'를 선택하여 소프트웨어 활성화 를 계속하십시오.

Activation		
Registration details		
Activation ID		
Contact name	(
Contact email address		
Company name		
Country	United Kingdom	
Serial number	XL Laser system	
	1-1-	- (The second

등록이 완료되면 두 가지 활성화 절차 중 하나를 선택합니다.

Activati	ion	
Activat	tion detai	ls
		1
	×	Automatic
	all	Requires working internet connection on this computer
		Manual
	\bowtie	Activation processing by manually transferring the files to the renishaw website
		b
-		

자동 활성화

자동 모드에서는 XCal-View가 설치되는 PC가 인터넷에 연결되어 있어야 합니다. XCal-View는 자동으로 활성화되고 다시 시작되어 사용 준비를 합니다. 이것이 가장 쉬운 소프트웨어 활성화 방법입니다.

수동 활성화

수동 활성화는 인터넷에 연결된 PC로 복사되는 파일을 생성하며, 이 PC에서 파일을 업로드할 수 있습니다. 그런 다음 아래 그림과 같이 'Manual activation' 대화 상자가 나타납니다.

화면에 나타나는 지침에 따라 활성화 요청을 생성하십시오. 주: '요청 파일'은 인터넷에 연결된 PC에서 renishaw.com/licensing/xcalview로 업로드해야 합니다. 그러면 응답 파일이 사용자에게 전송됩니다.

'응답 파일'이 수신되면

메모리 스틱(또는 유사한 장치)을 사용하여 XCal-View가 설치된 PC로 '응답 파일'을 전송합니다. '응답 파일'로 찾아가서 녹색 화살표를 클릭합니다.

XCal-View 소프트웨어 시작하기

홈 화면

이제 XCal-View 기본 응용 프로그램 창이 나타납니다.

이것은 XCal-View 소프트웨어를 사용하는 첫 번째 세션이므로 화면에 'Settings' 패널도 나타납니다.

'명령 표시줄'은 화면 오른쪽 하단에 있으며 다음과 같은 용도의 버튼을 포함합니다.

설정

측정 단위, 오차 단위, 언어 등의 분석 설정을 변경하고 문서에 개인 로고를 적용하는 등의 옵션을 제공합니다.

활성화 도구

명령 표시줄

제공 옵션에는 '30일 사용 평가판', '활성화 ID를 이용한 정식판 사용', '설치된 정식판을 다른 PC로 옮기기 위한 비활성화'가 있 습니다.

도움말

XCal-View 설명서를 엽니다.

XCal-View 정보

라이선스 계약, 남은 평가 일 수, 설치된 분석 패키지, '업데이트 확인'으로 연결되는 링크 등을 표시합니다.

설정

처음 소프트웨어를 실행할 경우, 원하는 대로 소프트웨어 설정을 변경하라는 메시지가 나타납니다.

아래 강조 표시된 대로 설정 탭을 사용하여, 드롭다운 화살표로 다음 설정을 변경할 수 있습니다.

🦯 Linear a	nd Straightness units				
Error	micrometres (µm)	•	Precision	1	
Target	millimetres (mm)		Precision	4	
🖌 Angular	units				
Error	arcseconds (arcsecs)	1	Precision	•	
Target	degrees (*)		Precision	0	
Squarer	iess units				
Units	micron/metre (µm/m)	•	Precision	4	
🔶 Environ	ment units				
Temperature	Celtius (*C)		Pressure	millibar (mbar)	
Coefficient	ppm per Degree Celsius (ppm/*C)		Humidity	RH (SRH)	E.

주: 이 값을 변경하면 분석 정확도가 떨어질 수 있습니다.

Units 탭

- 선형 및 직진도 단위
- 각도 단위
- 직각도 단위
- 환경 단위

Application 탭

- 회사 로고(보고서에 사용)
- 보고서 언어

Advanced configuration 탭

- 원시/비교 보기 직진도 기울기 제거 활성화
- 직각도 프리즘 오차
- 파일 인코딩 언어
- 동적 노이즈 제거

지원되는 분석 모드

현재 지원되는 분석 모드는 다음과 같으며 Laser10, LaserXL 및 RotaryXL을 사용해서 캡처한 데이터를 분석합니다.

- 선형
- 앵귤러
- 편평도
- 동적
 - 동적 측정
 - FFT 분석
- 직진도
- 직각도
 - 직진도 테스트 사용
- 선형 평행도
- 회전 평행도
- 대각선 분석
 - 바디 대각선
 - 페이스 대각선

이전에 Renishaw 소프트웨어에서 지원되었지만 XCal-View에서는 지원되지 않는 다른 표준은 'Renishaw analysis'를 사용해서 볼 수 있 습니다. 이 도구는 <u>www.renishaw.com/lasercalsupport</u>에서 다운로드할 수 있습니다.

데이터 파일 로드

홈페이지에서, 열려는 데이터에 해당하는 분석 모드를 선택합니다(예: 앵귤러 '.rta' 파일을 열려는 경우).

파일 브라우저를 사용하여 분석할 필수 데이터 파일을 선택합니다. 이제 데이터 파일이 열려 분석 포맷 적용 전 원시 데이터 플롯을 보여 줍니다.

데이터 검토 및 분석

검토

테스트 탐색기

테스트 탐색기 패널은 소프트웨어의 왼쪽에 있으며 선택된 테스트 파일에 관한 세부 정보를 포함합니다.

측정

선택된 결과 파일에 대한 '그래프 플롯' 및 '원시 데이터' 테이블을 표시합니다(위 그림 참조).

정보

수행된 캘리브레이션에 대한 모든 테스트 매개변수를 포함합니다.

- 테스트 정보
- 기계 정보
- 테스트 방법
- 테스트 매개변수
- 장비 설정
- 테스트 장비
- 소프트웨어 정보

환경

캘리브레이션 도중 환경 보정 장치에서 수신한 데이터를 포함합니다(연결된 경우).

데이터 실행 필터링

캡처된 데이터에서 특정 실행만을 사용자가 볼 수 있도록, 실행을 '필터링'하여 관심 있는 영역이 표시되도록 할 수 있습니다.

'graph plot' 모드 또는 'Raw data' 모드의 'RAW' 표준에서만 볼 때 플롯 오른쪽에 있는 'Test runs' 화면에서 옵션을 선택함으로써 필터링 할 수 있습니다.

Select all - 캡처된 데이터를 모두 표시합니다

Show only negative test runs - 음의 방향에서 캡처된 실행만 표시합니다

Show only positive test runs - 양의 방향에서 캡처된 실행만 보려면 이 옵션을 사용합니다

Invert Selection - 선택된 실행(체크 표시됨)과 선택되지 않은 실행(체크 표시되지 않음) 간에 전환합니다

Run1 (·) Manual Selection - 관심을 가지고 있는 실행을 선택할 수 있습니다. 간단히 상자를 클릭해서 실행을 선택/선택 취소하십시오

표준 열기

소프트웨어 내에서 테스트가 열린 경우에는 소프트웨어 내에서 지원되는 분석 표준 중 하나를 사용하여 데이터를 볼 수 있습니다. 분석 표준은 왼쪽에 있는 열에서 확인할 수 있으며 해당 탭을 클릭하여 선택할 수 있습니다. 그러면 관련 분석 표준을 기준으로 데이터가 분석 됩니다.

지원되는 분석 표준

ASME 5.54 1992; ASME 5.54 2005; GB 17421.2 2000; ISO 230-2 1997; ISO 230-2 2006; ISO 230-6 2006; JIS B 6192 1999; JIS B 6190-2 2008; Renishaw 2012; VDI 3441 1977; VDI 2617 1989

데이터 보기 전환

데이터 플롯 상단에 있는 탭을 사용하여 여러 형식으로 데이터를 볼 수 있습니다. 형식 옵션은 선택한 분석 표준에 따라 달라집니다.

그래프 플롯 옵션

Cal-View 분석에서 플롯 스타일 변경

버튼을 선택하여 그래프 구성 메뉴를 엽니다. 이 메뉴에는 다음과 같은 옵션이 있습니다.

a) Scaling 탭

X축과 Y축에 대해 별도로 원하는 배율 조정 옵션을 선택합니다. 사용 가능한 옵션은 automatic, manual 또는 manual centered scaling입니다.

b) Display 탭

- Show legend 플롯 오른쪽에 실행 ID를 표시합니다.
- Show grid 스케일에 비례하여 플롯에 '배경 눈금'을 표시합니다.
- Black and White 모든 플랫 실행을 흑백으로 전환합니다.
- Line thickness 플롯선의 두께를 조정합니다.
- Marker style 원시 Renishaw 그래프에 사용된 마커의 스타일을 선택합니다.

분석 기능 강조 표시

분석 결과 테이블에서 'Analysis feature'를 선택하여 그래프 플롯에 값이 표시되는 위치를 그래픽적으로 강조 표시할 수 있습니다.

그래프 상호 작용

XCal-View 내에서 테스트를 분석할 때 다음 옵션을 사용하여 그래프 보기를 맞춤 설정할 수 있습니다.

마우스 포인터 주변으로 확대/축소

'그래프 플롯'에 마우스 포인터를 놓고 스크롤 휠을 회전시킵니다. 'Ctrl' 키를 누른 채 + 또는 – 버튼을 눌러 확대 또는 축소합니다

축 스케일 '확대/축소'

필요한 축에 마우스 포인터를 놓고 왼쪽 마우스 버튼을 클릭한 후 마우스 휠을 스크롤합니다.

수동으로 선택한 영역으로 '확대/축소'

마우스 스크롤 휠을 잡고 영역을 끌어 확대/축소합니다. 영역을 확대/축소하려면 'Ctrl' 키를 누른 채 그래프 플롯에서 마우스 오른쪽 버튼을 누르고 끄십시오.

축 스케일을 위, 아래로 '이동'

필요한 축에 마우스 포인터를 놓고 마우스 오른쪽 버튼을 누른 채 축을 끕니다. 마우스 포인터를 두 축 중 한 곳에 놓고 마우스 왼쪽 버튼을 클릭하고 'Ctrl' 버튼을 누른 채 화살표 키를 사용합니다.

그래프 플롯 '이동'

마우스 포인터를 '그래프 플롯'에 놓고 마우스 오른쪽 버튼을 누른 채 '끕니다'. 마우스 포인터를 '그래프 플롯'에 놓고 '마우스 왼쪽 버튼을 클릭'합니다. 그런 다음 'Ctrl' 버튼을 누른 채 화살표 키를 사용하십시오.

점 좌표 및 시리즈 세부 정보 '보기'

마우스 포인터를 '그래프 플롯'의 캡쳐 지점 위에 놓고 왼쪽 마우스 버튼을 누른 채로 있으면 정보가 표시됩니다.

기본 설정 '되돌리기'

마우스 포인터를 '그래프 플롯' 영역에 놓고 마우스 스크롤 휠을 두 번 클릭합니다. 마우스 포인터를 '그래프 플롯' 영역에 놓고 Ctrl 버튼을 누른 후 마우스 오른쪽 버튼을 두 번 클릭합니다. 마우스 포인터를 '그래프 플롯' 영역에 놓고 'Ctrl+A'를 누릅니다.

그래프 상호 작용(태블릿용)

확대/축소

화면에서 '펼치기' 및 '모으기' 제스처를 사용해서 확대/축소할 수 있습니다.

그래프 플롯 '이동'

화면에서 끌기 제스처로 이동할 수 있습니다.

고객 보고서 작성

보고서는 다음 두 가지 방법으로 작성할 수 있습니다.

- 편집을 위해 관련 데이터를 복사하여 다른 응용 프로그램에 붙여넣기.
- XCal-View 소프트웨어 응용 프로그램 내에서 서식 지정된 PDF 작성.

주: .PDF 보고서를 보려면 PC에 Adobe® Reader가 설치되어 있어야 합니다.

복사해서 붙여넣으려면:

소프트웨어 내의 데이터는 복사 기호 🚺가 나타나는 아무 페이지에서나 복사할 수 있습니다.

그래프 플롯 보기

원시 데이터 보기

T Managements	× 22	Craph plot	Rave data									Tert		8		
Lines	100	Row data	a (micrometre	st												
() Selamotion	Retichae 2012	Index.	Targets (mm) 6.0000	Re11+1	Ref 101	Run 2 (+) Run	14 Fun 3 (+)	Run1(-)	Rank(+) R.	2.3 Fund	(-) Run3(-) 0.8 1.5		urd (+)	1		
	12	2	150,7100	62	54	60 16	4.6 0.4	5.7	14	34	15 59		und (-) un2 (-)			
	2992	4	458,3300	4.6		14	21 05	3.6		22	21 23		und (-)			
	逐	3	6011300	-84	-90		-94 -78	-63	-61	43	6.9 -7.8		und(-) und(-)			
	3005	.1	801,5500	-4.1	-54		40 -54	-4.7	-44	-12	ม่าม		und (+)			
			1056.0200	35	-14	-16	48 48	-44	-23	4	23 -28		uni () uni ()			
	66 17421.2 3000	10	1251.3000	-7.8	-36	-55	4.6 -5.6	-2.9	-17	-2.0	22 -14		urð (-)			
		11	1506.4100				48 -56									
	100 236-2 2006			P	A	B	с	D	E	F	G	н	1	J	К	L
						1 AFRACT.										
Cerro point uttoet	15 B 41,92			1	Index	(mm)	Run 1 (+)	Run 1 (-)	Run 2 (+)	Run 2 (-)	Run 3 (+)	Run 3 (-)	Run 4 (+)	Run 4 (-)	Run 5 (+)	Run 5 (-)
Cerropene	122 15-0-41.92 1999			1	Index	(mm) 1 0	Run 1 (+) -2.6	Run 1 (-) 2.3	Run 2 (+) -1.6	Run 2 (-) 1.1	Run 3 (+) -2.7	Run 3 (-) 3.2	Run 4 (+) -1.8	Run 4 (-) 2.3	Run 5 (+) -0.9	Run 5 (-) 1.5
Cerripeet attest Cerripeet Sirce Compensation	1000 1000	<u> </u>	_	1 2 3	Index	(mm) 1 0 2 150.71	Run 1 (+) -2.6 0.2	Run 1 (-) 2.3 5.4	Run 2 (+) -1.6 0.7	Run 2 (-) 1.1 4.6	Run 3 (+) -2.7 0.4	Run 3 (-) 3.2 5.7	Run 4 (+) -1.8 1.8	Run 4 (-) 2.3 5.4	Run 5 (+) -0.9 1.5	Run 5 (-) 1.5 5.9
Company Company Error Companyation	22 15 D 41 31 2000		_	1 2 3 4	Index	(mm) 1 0 2 150.71 3 300.85	Run 1 (+) -2.6 0.2 -5	Run 1 (-) 2.3 5.4 -1.5	Run 2 (+) -1.6 0.7 -3.6	Run 2 (-) 1.1 4.6 -1	Run 3 (+) -2.7 0.4 -4.8	Run 3 (-) 3.2 5.7 -0.8	Run 4 (+) -1.8 1.8 -2.7	Run 4 (-) 2.3 5.4 -2.6	Run 5 (+) -0.9 1.5 -2.8	Run 5 (-) 1.5 5.9 -0.8
Company Company Ener Companyation ISHAW	15 B 6132 2996			1 2 3 4 5	Index	(mm) 1 0 2 150.71 3 300.85 4 450.33	Run 1 (+) -2.6 0.2 -5 0.6	Run 1 (-) 2.3 5.4 -1.5 2.4	Run 2 (+) -1.6 0.7 -3.6 1.6	Run 2 (-) 1.1 4.6 -1 2.1	Run 3 (+) -2.7 0.4 -4.8 0.5	Run 3 (-) 3.2 5.7 -0.8 3.6	Run 4 (+) -1.8 1.8 -2.7 2.3	Run 4 (-) 2.3 5.4 -2.6 2.2	Run 5 (+) -0.9 1.5 -2.8 2.3	Run 5 (-) 1.5 5.9 -0.8 2.9
Company Company Control Company States ISHAW	2005 1995 1995	-		1 2 3 4 5 6	Index	(mm) 1 0 2 150.71 3 300.85 4 450.33 5 601.11 6 750.31	Run 1 (+) -2.6 0.2 -5 0.6 -8.4	Run 1 (-) 2.3 5.4 -1.5 2.4 -9	Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4	Run 2 (-) 1.1 4.6 -1 2.1 -9.4	Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8	Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1	Run 4 (+) -1.8 1.8 -2.7 2.3 -6.1	Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3	Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9	Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -7.8
Company attack Company Inter Companyation ISHAW& recorded	22 15 9 4 4 5 1 1999 			1 2 3 4 5 6 7 8	Index	(mm) 1 0 2 150.71 3 300.85 4 450.33 5 601.11 6 750.31 7 901.55	Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -4.9 -6.3	Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9	Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7 -5.1	Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9 -5.6	Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7 -5.6	Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4	Run 4 (+) -1.8 1.8 -2.7 2.3 -6.1 -3.4	Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3 -4.3	Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2	Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -2.9 -3.3
Company Company Ener Company State S	22 10 14437 1999 10 14437			1 2 3 4 5 6 7 8 9	Index	(mm) 1 0 2 150.71 3 300.85 4 450.33 5 601.11 6 750.31 7 901.55 8 1050.02	Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -4.9 -6.3 -5.5	Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9 -5.8 -5.8	Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7 -5.1 -3.6	Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9 -5.6 -4.8	Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7 -5.6 -5.6	Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4 -4.7 -4.7	Run 4 (+) -1.8 1.8 -2.7 2.3 -6.1 -3.4 -4.1 -2.3	Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3 -4.2 -4.4	Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2 -2.3	Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -3.3 -2
Zero point affluer Company Ener Companyation Ener Companyation				1 2 3 4 5 6 7 8 9 10	Index	(mm) 1 0 2 150.71 3 300.85 4 450.33 5 601.11 6 750.31 7 901.55 8 1050.02 9 1201.9	Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -4.9 -6.3 -5.5 -8.2	Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9 -5.8 -5.6 -6.1	Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7 -5.1 -3.6 -5.9	Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9 -5.6 -4.8 -5	Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7 -5.6 -5 -6.3	Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4 -4.7 -4.7 -4.8	Run 4 (+) -1.8 1.8 -2.7 2.3 -6.1 -3.4 -4.1 -2.3 -4.5	Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3 -4.2 -4.4 -3.1	Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2 -2.3 -3.4	Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -3.3 -2 -2 -2
Zere pontation Company Ener Companyation NISHAW di enclosed of "	NA T			1 2 3 4 5 6 7 8 9 10	Index	(mm) 1 0 2 150.71 3 300.85 4 450.33 5 601.11 6 750.31 7 901.55 8 1050.02 9 1201.9 0 1351.56	Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -4.9 -6.3 -5.5 -8.2 -7.4	Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9 -5.8 -5.6 -6.1 -5.6	Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7 -5.1 -3.6 -5.9 -5.5	Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9 -5.6 -4.8 -5 -4.6	Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7 -5.6 -5 -6.3 -5.4	Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4 -4.7 -4.4 -4.8 -2.9	Run 4 (+) -1.8 1.8 -2.7 2.3 -6.1 -3.4 -4.1 -2.3 -4.5 -3.7	Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3 -4.2 -4.4 -3.1 -2.8	Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2 -2.3 -3.4 -2.2	Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -3.3 -2 -2 -2 -1.4
Zero poet atter Company Ener Companyation NISHAW d	100 100 100 100 100 100 100 100 100 100			1 3 4 5 6 7 8 9 10 11 12	Index	(mm) 1 0 2 150.71 3 300.85 4 450.33 5 601.11 6 750.31 7 901.55 8 1050.02 9 1201.9 0 1351.56 1 1500.41	Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -4.9 -6.3 -5.5 -8.2 -7.4 -7.8	Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9 -5.8 -5.6 -6.1 -5.6 -3	Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7 -5.1 -3.6 -5.9 -5.5 -5.8	Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9 -5.6 -4.8 -5 -4.6 -1.8	Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7 -5.6 -5.6 -5.4 -5.6	Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4 -4.7 -4.4 -4.8 -4.8 -2.9 -0.2	Run 4 (+) -1.8 1.8 -2.7 2.3 -6.1 -3.4 -4.1 -2.3 -4.5 -3.7 -4.7	Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3 -4.3 -4.2 -4.4 -3.1 -2.8 0	Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2 -2.3 -3.4 -2.2 -2.7	Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -3.3 -2 -2 -2 -1.4 2.7

' 복사 및 붙여넣기 '는 '검토'와 '분석' 모두에서 사용할 수 있습니다.

PDF를 작성하려면:

PDF 보고서는 Adobe® 기호 🎦 버튼을 클릭하여 분석 화 면에서 생성할 수 있습니다. 이렇게 하면 추가 Adobe 옵션 (예: 저장 및 인쇄)을 선택할 수 있습니다. 또한 간단히 📑 버 튼을 클릭해서 인쇄로 이동하십시오.

개인 회사 로고 추가

XCal-View 내에서 생성된 보고서에 대해 개인 회사 로고를 추가할 수 있습니다.

로고를 추가하려면

화면 오른쪽 하단에 있는 '명령줄'에서 '설정' 아이콘을 선택합니다.

그러면 'XCal-View Settings' 대화 상자가 열립니다. 이 대화 상자에서 'Application' 탭을 선택한 다음 개인 로고를 찾습니다. 주: 로고의 크기는 200 x 50픽셀이어야 하며 소프트웨어는 선택한 로고를 화면 크기에 맞게 조정합니다.

Settings	
Units Application Advanced configuration	
Report	
Logo RENISHAW/J apply innovation Note Image must be 200 x 50 pixels.	
Language English	

이제 개인 회사 로고가 'PDF' 및 'printed' 테스트 보고서의 오른쪽 상단에 나타납니다.

Renisha example.rti Operator: R	aw Analysis- 2012:Line Typical test results CT.S.	ar X			RENISHAW Apply innevation"
	Machine name Axis under test Serial number	Linear Example X 15345/Lin	Number of runs Targets Test date	5 Alternate bidir 11 Linear 1989-05-15T08:09:00	
	Test equipment	Serial n	umber	Calibration date	
	0.015	8	Zero line		
	/				

파일 비교 보기

데이터 파일 비교

XCal-View 소프트웨어를 사용해서 데이터 파일을 비교할 수 있습니다. 이 기능은 오차 보정 전, 후에 데이터를 비교하거나 선형 위치에 대한 각도 오차의 영향을 확인하는 등의 상황에 유용합니다.

파일을 비교하려면:

확장 횐 아이콘을 사용하여 소프트웨어 화면 왼쪽에 있는 'Test explorer' 패널을 확장합니다

'Compare' 버튼을 선택합니다.

화면 왼쪽에서 'Add' 📑 버튼을 선택하고 필요한 데이터 파일을 찾아 다른 테스트를 추가할 수 있습니다.

선택하면, 두 데이터 세트 모두 그래프 플롯에 표시됩니다.

주: 필요하면 그래프에 추가 축이 나타납니다.

비교 보기에서 단일 '데이터 채널' 제거

단일 '데이터 채널'을 제거하려면 'Test explorer' 패널에서 해당 데이터 파일을 클릭하여 아래 그림과 같이 주황색으로 강조 표시되게 하 십시오

비교 보기에서 모든 '데이터 채널'을 제거하려면

모든 데이터 채널을 제거하려면 간단히 왼쪽 패널에 있는 'Reset' 아이콘 💭을 클릭하면 됩니다. 그러면 모든 데이터 파일을 제거할지 묻는 메시지가 표시됩니다. 그대로 진행하려면 OK를 선택합니다 주: 이때 파일은 비교 화면에서만 제거되며, 원래 파일이 PC에서 제거되지는 않습니다.

영점 오프셋

영점 이동을 통해 사용자는 표시되는 유효 '0' 위치가 데이터 캡처 시점에 설정된 위치와 다르도록 데이터를 오프셋할 수 있습니다. 이 방 법은 로터리 축의 오차 보정 시 유용할 수 있습니다.

영점 오프셋 적용

데이터 파일을 엽니다.

'Test explorer' 패널 하단에서 'Zero point offset' 버튼을 선택합니다.

'Zero point offset' 대화 상자가 표시됩니다.

다음을 선택하여 사용자에 맞게 'Zero point offset'을 구성할 수 있습니다:

실행선택

- 평균 실행
- 캡처된 결과로부터 특정 실행 선택

축 위 치

• 축위치설정

아래는 오차가 0 µm 이하인 0 mm 지점을 보여주는 원래 파일의 예입니다(캘리브레이션 도중 캡처). 'zero point shifted' 파일은 실행 1의 600 mm 지점이 0 µm 측정 오차로 '이동'한 동일한 파일을 보여줍니다.

원래 설정으로 되돌리기

원래 설정으로 되돌리려면 'Apply zero point offset'의 선택을 취소합니다

오차 보정

확장 횐 아이콘을 사용하여 소프트웨어 화면 왼쪽에 있는 'Test explorer' 패널을 확장합니다

확장하면 'Error Compensation' 버튼이 나타납니다.

'Error Compensation' 버튼을 선택합니다.

그러면 Error compensation 대화 상자가 나타납니다

구성

1) 보정 유형

두 가지 유형이 보정이 지원됩니다.

- 표준 백래시 값이 있는 하나의 보정 값 테이블
- 양방향 순/역 방향에 대한 별도의 값

2) 계산유형

두 가지 계산이 보정이 지원됩니다.

- 증분 이전 보정 지점과 비교해서 계산한 값
- 절대 절대값으로 계산된 보정 지점
- 3) 보정 분해능

생성된 보정 값의 분해능

4) 부호규약

출력 값을 '오차' 또는 '오차 보정 값'으로 구성합니다

5) 종류

생성된 출력 파일의 스타일을 정의합니다

6) 기준위치

보정의 영점이 적용되는 축 위치

7) 보정시작

보정이 적용되는 축의 시작 위치

8) 보정끝

보정이 적용되는 축의 마지막 위치

9) 보정 간격

각 보정 지점 사이 간격

이 지점에서, 왼쪽 패널의 보정 설정은 사용자 요구 사항에 맞게 지정해야 합니다.

구성 설정 저장

📃 나중에 사용하기 위해 구성 설정이 필요하면 'save' 아이콘을 사용해서 저장할 수 있습니다.

구성 설정 로드

기계에 대해 이미 저장된 구성 설정이 있으면 'load configuration' 아이콘을 선택하고 구성을 찾아볼 수 있습니다.

LEC.REN 및 LEC2.REN 옵션

오차 보정 파일을 생성할 때 LEC.REN과 LEC 2.REN의 두 가지 형식 옵션을 사용할 수 있습니다.

두 파일 형식 간 차이점은 보정 데이터가 표시되는 방식입니다.

사용 중인 기계 컨트롤러에 가장 잘 맞는 형식을 선택하십시오.

아래는 두 오차 보정 파일의 예입니다.

LEC.REN

			LEG2.	RE
ele.				
File	example		tile average at	
Table b		food setting with head lash waters	File example.rd	
Table ty	pe com	bined table with backlash value	Table have	
Comper	nsacion type	Incremental	Comparation time incomparatel	
Compensation resolution 0.001 µm		0.001 µm	Compensation type Incremental	
Sign cur	wention A	compensation	Size convention As compensation	
Kereren	ice posición e	mm	Reference position 0 mm	
Comper	nsation start	-100 mm	Composition start 0 mm	
Comper	nsacion eno	-200 mm	Compensation and 200 mm	
comper	isación spacing	10 mm	Compensation concine 10 mm	
-			compensation spacing to min	
Backlas	h value 1.5	as µm	Resident and STR on	
			Backiesh Value 1.585 µm	
			Axis position(mm)	
	Co	mpensation values	-200	
			-190	
No	Axis position	Combined	-180	
	(mm)	(0.001 µm)	-170	
1	-200	204	-160	
2	-190	204	-150	
3	-180	205	-140	
4	-170	204	-130	
3	-160	205	-120	
6	-150	204	-110	
7	-1.40	204	-100	
s	-130	205	-90	
9	-120	204	-80	
10	-110	204	-70	
11	-100	205	-60	
12	-90	204	-50	
13	-80	204	-40	
14	-70	205	-30	
15	-60	204	-20	
16	-50	205	-10	
17	-40	204	0	
18	-30	204		
19	-20	205	Compensation values(0.001 µm)	
20	-10	204	204	
21	0	0	204	
			205	
			204	
			205	
			204	
			205	

XCal-View 내에서 오차 보정 파일 보기

구성 설정이 설정되고 나면 'Generate' 아이콘을 선택합니다.

그러면 오차 보정 데이터가 아래 그림과 같이 'Compensation table' 형식 또는 'Graphical compensation' 형식으로 표시될 수 있습니다.

Graphical compensation 보기에는 표시된 플롯에 초기 캡처 데이터 결과와 함께 '보정 후 예상 성능'이 나타납니다.

오차 보정 파일 저장

오차 보정이 생성되면 Export 옵션을 선택하여 보정 파일을 저장하십시오.

nfiguration			nion table Gra	hical compensation	
•		Backlas	h error: 1.585	m	
ompensation type	Standard .				
		Increme	ntal Error comp	nsation table (µm)	
accusation type	Incrementar •	- Dotes		Combined (Scale 0001)	
ompensation resolutio	- 0.001 yes 🔹	1	-200.0000	204	
			-190.0000		
ign convention	As compensation		-180.0000		
	LICRIN .		-170.0000		
			-160.0000		
			-150.0000		
meneror position			-140.0000		
ompensation start	0.0000 mm		-130.0000		
			-120.0000		
ompensation end	-200 mm		-110.0000		
	10		-100.0000		
			-90.0000		
			-80.0090	204	
			-70.0000	205	
		15	-60.0000	204	
			-50.0000	20	
			-40.0000	24	
			-30.0000	294	
Generate	Seve		-20.0000	205	

그러면 소프트웨어가 보정 테이블을 저장할 위치를 선택할 수 있습니다.

업데이트 확인

XCal-View가 업데이트된 소프트웨어 버전이 있는지 자동으로 확인합니다*.

위 이미지는 업데이트 창의 한 예입니다. 이 창은 사용자에게 업그레이드 시 제공되는 주요 이점 및 새로운 기능과 함께 사용 가능한 소 프트웨어 업데이트 버전 번호를 알려줍니다.

인터넷에 연결된 PC 또는 노트북에서 XCal-View가 시작될 때마다 자동 업데이트 기능이 백그라운드에서 검사를 실행하여 최신 버전인 지 확인합니다. 최신 버전이 설치되어 있으면 아무것도 알리지 않고 소프트웨어가 평상시처럼 로드됩니다. 사용 가능한 업데이트가 있 으면 위와 같이 사용자에게 업데이트 창을 표시합니다.

창 하단에 '알림' 기능이 있습니다. 그러면 업데이트할 수 있도록 보다 편리하게 한 번에 사용자에게 알릴 수 있습니다.

언제든 소프트웨어 오른쪽 하단에 있는 '정보' 버튼

을 <u>클릭해서</u> 업데이트 창(사용 가능한 경우)을 다시 평가할 수 있습니다. 사용

가능한 업데이트가 있으면 '정보' 버튼에 화살표가 표시됩니다

*인터넷 연결이 필요합니다

Renishaw 정 보

Renishaw는 오랜 기간 동안 제품 개발 및 제조 부문의 혁신과 함께 엔지니어링 기술을 선도하는 세계적 기업입니다. 1973년 설립된 이후 공정 생산성을 개선하고 제품의 품질을 향상시키고 비용대비 효율이 높은 자동화 솔루션을 제공하는 최첨단 기술 제품을 공급해왔습니다.

전세계 자회사와 유통망을 통해 고객들에게 탁월한 서비스와 지원을 제공하고 있습니다.

다음과 같은 제품을 생산/공급 합니다.

- 레이저 용해, 진공 주조, 분사 금형 기술을 포함하는 적층 제조기술
- 여러 분야의 다양한 응용에 활용하는 고급 재료기술
- 치형 CAD/CAM 스캐닝 및 밀링 시스템과 치형 구조의 공급
- 고정밀 리니어, 앵글 및 로터리 위치 피드백용 엔코더 시스템
- 3차원 측정기와 게이지 시스템 용 고정구
- 가공품의 비교측정을 위한 게이지 시스템
- 극한 환경에서 사용할 수 있는 고속 레이저 측정 및 검사 시스템
- 기계의 성능 측정 및 캘리브레이션용 레이저 및 볼바 시스템
- 신경외과 분야용 의료 장비
- CNC 공작 기계의 공작물 셋업, 공구 셋팅 및 검사용 프로브 시스템 및 소프트웨어
- 비파괴 소재 분석용 라만 분광기 시스템
- 센서 시스템과 3차원 측정기 소프트웨어
- 스타일리 CMM 및 공작 기계 프로브 분야용 제품

각 지역 연락 정보는 Renishaw 웹 사이트www.renishaw.com/contact를 참조하십시오.

Renishaw는 출판일 당시 본 안내서 정보의 정확성에 만전을 기했지만 내용에 관하여 어떠한 보증이나 주장도 하지 않습니다. 어떠한 상황에서도 본 안내서의 모든 부정확성에 대한 책임이 Renishaw에 없습니다.

©2013-2014 Renishaw plc. All rights reserved.

Renishaw는 예고 없이 사양을 변경할 수 있는 권리를 보유합니다.

RENISHAW 로고에 사용된 RENISHAW와 프로브 엠블럼은 영국과 기타 국가에서 Renishaw plc의 등록 상표입니다. apply innovation과 레니쇼 제품 및 기술에 적용된 명칭은 Renishaw plc 및 지사의 등록 상표입니다. 이 문서에 사용된 모든 상표 이름과 제품 이름은 해당 소유주의 상호, 상표 또는 등록 상표입니다.