RENISHAW. apply innovation™

Applying Innovation to aerospace manufacturing

Industrial Metrology

Process control & Part verification

- CNC machine calibration and performance assessment
- Consistent process output accommodate variation
- Compensate for changes or drift during machining
- Verification of parts to meet design intent

Renishaw as a manufacturer

- High variety, low volume.
- Reduced CNC machining operations
- Automation
- Minimise costs
- Continually introduce new product parts

Renishaw technology enables...

- Highly productive precision machining
- Reduced skill requirements
- Reduced quality costs
- Enabler for factory automation

The Productive Process Pyramid

Applications relevant to many industries

Process Input / source of variability					
Machine dynamic performance – accuracy of interpolated features	✓				
Cosmetic surface finish on circular interpolation	✓				
Machine set up – critical alignments and positions			\checkmark		
Tool length and diameter offset measurement		\checkmark			
Confirmation of expected tool assembly		✓			
Work piece set up – position and alignment			✓		
Compensation for input material variation			\checkmark		
Machine and part thermal growth compensation			\checkmark	\checkmark	
Tool breakage detection		\checkmark			
Process control of tool offsets			✓	✓	
Point of manufacture QA				✓	
Final certification and pass off prior to assembly					\checkmark

Traditional CNC manufacturing environment

Smart factory – our view

Aerospace manufacturing challenges

- Increased throughput
- Cost pressures global supply chain, labour / skills
- Quicker product development time
- Closer tolerances, better manufacturing capability
- Increased Flexible Automation
- New materials, near net processes
- Increased digitalisation of manufacturing

Large volume machine performance

Flow International Corporation

- HS20 Laser Encoder / RCU10
- 40m Waterjet / Routing gantry machine
- 130 hour machining cycle
- RMP60 Spindle probing system
- High value parts

Establishing CNC machine performance

Machine calibration

Establishing CNC machine performance

5-axis machine kinematics

Establishing CNC machine performance

Health check

CNC machining process set up

On-machine tool setting

- Automatic setting of offsets
- Confirmation of correct tool
- Tool wear / breakage detection

CNC machining process set up

Part Setting

- Part location work offsets
- Part alignment
- Error checking

CNC machining process set up

NC-PerfectPart

Precision 5-axis machining

Adaptive machining...

- Removal of friction welded excess material.
- Removal of welded bead on blade tip.
- Zero fettling or manual polishing.

Automated strategies

In-process checks

In-batch measurement – Equator

Process and part validation

Process validation

Process and part validation

Part validation

Process and part validation

Multi sensor technology

Additive manufacturing in aerospace

Aerospace performance drivers

- ✓ Light-weighting
- ☑ Part consolidation
- ✓ Complex forms
- ✓ Automated manufacture
- ☑ Efficient use of materials

Productive laser powder bed fusion

Higher productivity = lower part cost

Faster laser powder bed fusion

- Multi-lasers enable faster builds for lower part costs
- Intelligent gas flow ensures consistent quality for high fatigue performance
- Efficient powder re-cycling for minimal waste

Gas flow CFD simulation

Solutions for the entire AM process chain

Your partner for innovative manufacturing

