

AksIM-2 BiSS-C によるレジスタアクセス

概要

AksIM-2 に実装されている BiSS-C プロトコルは、エンコーダとコントローラのレジスタレベルでの 双方向通信が可能である。AksIM-2 はユーザーによる設定が可能で、4kB のユーザーメモリを搭載している。リニアエンコーダとロータリエンコーダのグループ化に使用される BiSS (「BP3」とも呼ばれる標準エンコーダプロファイル) が使用できる。BiSS によるレジスタへのアクセスと BP3 については、iC-Haus 社の文書に詳述されている。

ユーザーによる実装

ユーザー側では、iC-Haus 社が提供する BiSS 文書に従って、独自のハードウェアに双方向 BiSS を実装可能である。SPI バス上のハイレベルコマンドを BiSS に変換する iC-Haus 社の iC-MB4 チップを使用することも可能だが、関連付けられたソフトウェアを含む、RLS の E201-9B インターフェースを使用するのが最も簡単である。

A RENISHAW @ associate company

レジスタについて

AksIM-2 の BiSS メモリマップ:

バンク	アドレス	データ型	アクセス	説明
	0x00~0x03	U32	読書き	ポジションオフセット
	0x04~0x07	U32	読書き	ポジションフィルタの値
	0x08~0x0B	U32	読書き	ポジションフィルタの速度
	0x0C~0x0F	U32	読書き	速度フィルタの値
	0x10~0x13	U32	読書き	速度フィルタの速度
	0x14~0x17	U32	読書き	マルチターンカウンタのプリセット
	0x18	U8	読書き	マルチターンエラーの円弧長
	0x19~0x1A	U16	読書き	自己キャリブレーション用の部分円弧長
	0x1B	U16	読出し	回転軸中心からのリングの偏心量
	0x1D	U16	読出し	リングの偏心角度 (位相)
	0x1F	S16	読出し	リードヘッドの径方向移動 (正=外側)
	0x1B~0x2D	U8	読出し	予備
,	0x2E	U8	読書き	書込み保護ロック
0	0x2F~0x30	U16	読出し	FW メジャーバージョン
	0x31~0x32	U16	読出し	FW マイナーバージョン
	0x33~0x34	U16	読出し	プロトコルバージョン
	0x35~0x36	U16	読出し	リビジョン番号
	0x37	U8	読出し	バンク8のチェックサム
	0x38	U8	読出し	バンク 9 のチェックサム
	0x39	U8	読出し	バンク 10 のチェックサム
	0x3A	U8	読出し	バンク 11 のチェックサム
	0x3B	U8	読出し	バンク 12 のチェックサム
	0x3C	U8	読出し	バンク 13 のチェックサム
	0x3D	U8	読出し	バンク 14 のチェックサム
	0x3E	U8	読出し	バンク 15 のチェックサム
	0x3F	U8	読出し	バンク 0 のチェックサム
1~7	0x00~0x3F	U8	読出し	予備
8	0x00~0x3F	S8	読書き	エラーマップ [0~63]
9	0x00~0x3F	S8	読書き	エラーマップ [64~127]
10	0x00~0x3F	S8	読書き	エラーマップ [128~191]
11	0x00~0x3F	S8	読書き	エラーマップ [192~255]
12	0x00~0x3F	S8	読書き	エラーマップ [256~319]
13	0x00~0x3F	S8	読書き	エラーマップ [320~383]
14	0x00~0x3F	S8	読書き	エラーマップ [384~447]
15	0x00~0x3F	S8	読書き	エラーマップ [448~511]
16	0x00~0x3F	U8	読出し	BiSS EDS の共通部分
17	0x00~0x3F	U8	読出し	BiSS EDS の標準エンコーダプロファイル
18~23	0x00~0x3F	U8	読出し	予備
24~87	0x00~0x3F	U8	読書き	ユーザーメモリ

バンク	アドレス	データ型	アクセス	説明
	0x40	U8	読書き	バンク選択
	0x41	U8	読出し	EDS バンク
	0x42~0x43	U16	読出し	プロファイル ID
	0x44~0x47	U32	読出し	シリアル番号 (エンコード済み)
	0x48	U8	読書き	キーレジスタ
	0x49	U8	読書き	コマンドレジスタ
	0x4A~0x4B	U16	読出し	エンコーダステータス (「エンコーダの動作パラメータ」を参照)
	0x4C~0x4D	S16	読出し	センサー温度 (℃)
ダイレクトアクセス	0x4E~0x4F	U16	読出し	信号レベル
	0x50~0x51	S16	読出し	回転速度 (rev/min)
	0x52	U8	読出し	自己キャリブレーションの状態
	0x5C~0x61	U8	読出し	RLS のシリアル番号
	0x62~0x63	U8	読出し	予備
	0x64~0x73	U8	読出し	RLS のパーツ No.
	0x74~0x77	U8	読出し	予備
	0x78~0x7D	U48	読出し	デバイス ID
	0x7E~0x7F	U16	読出し	メーカー ID

U16、U32、U48のデータは、ビッグエンディアン(最小値アドレスにおける最大値バイト)として保存される。

BiSS EDS の共通部分

アドレス	シンボル	説明	データ型	単位	値
0x00	EDS_VER	EDS バージョン	U8	-	1
0x01	EDS_LEN	EDS長	U8	バンク	2
0x02	USR_STA	ユーザーの開始バンクアドレス	U8	-	24
0x03	USR_END	ユーザーの終了バンクアドレス	U8	-	87
0x04	TMA	最短許容クロック周期	U8	1ns	200
0x05	TO_MIN	最短 BiSS タイムアウト	U8	250ns	52
0x06	TO_MAX	最長 BiSS タイムアウト	U8	250ns	60
0x07	TOS_MIN	最短 BiSS timeout_S	U8	25ns	0
0x08	TOS_MAX	最長 BiSS timeout_S	U8	25ns	0
0x09	TCLK_MIN	最小サンプリング周期アダプティブタイムアウト	U8	25ns	0
0x0A	TCLK_MAX	最大サンプリング周期アダプティブタイムアウト	U8	25ns	0
0x0B	TCYC	最短サイクル時間	U8	250ns	表A
0x0C	TBUSY_S	最長処理時間 SCD	U8	250ns	0
0x0D	BUSY_S	最長処理時間 SCD (クロック)	U8	TMA	13
0x0E~0x0F	PON_DLY	制御通信が可能になるまでの、最長電源 ON 遅延	U16	1ms	60
0x10	DC_NUM	デバイス内のデータチャンネル数	U8	-	1
0x11	SL_NUM	EDS の有効領域 (スレーブアドレスの数)	U8	-	1
0x12	SL_OFF	EDS 用のメモリ位置 (デバイス内のスレーブ ID)	U8	-	0
0x13		予備	U8		0
0x14	BANK1	データチャンネル 1 の内容説明用バンクアドレス (プロファイル EDS)	U8	-	17
0x15	DLEN1	データチャンネル 1 のデータ長	U8	bit	表A
0x16	FORMAT1	データチャンネル1のデータ形式	U8	bit	2
0x17	CPOLY1	データチャンネル 1 の CRC 多項式 (8:1)	U8	-	0x21
0x18~0x33		予備	U8		0
0x34	BC_OFF	デバイスのバスカプラ制御位置 (デバイス内のスレーブ ID)	U8	-	0
0x35~0x3E		予備	U8	-	0
0x3F	CHKSUM	チェックサム (バンク内のバイトの総計)	U8	-	xx
					-

U16 のデータは、ビッグエンディアン (最小値アドレスにおける最大値バイト) として保存される。

表Α

		エンコーダのタイプ						
EDS パラメータ	17bit	17bit	18bit	18bit	19bit	19bit	20bit	20bit
	ST	MT	ST	MT	ST	MT	ST	MT
DLEN1	19	35	20	36	21	37	22	38
тсус	104	116	104	120	108	120	108	120

ST: シングルターン MT: マルチターン

BiSS EDS 標準エンコーダプロファイル:

アドレス	シンボル	説明	データ型	単位	値
0x00	BP_VER	BiSS プロファイル 3 バージョン	U8	-	1
0x01	BP_LEN	プロファイル長	U8	バンク	1
0x02~0x03	BP_ID	BP3 のプロファイル ID (アドレス 0x42 および 0x43 でも利用可能なコンテンツ)	U16	-	表 B
0x04	FB1	フィードバックビット 1 (nError=1)	U8	-	1
0x05	FB2	フィードバックビット 2 (nWarning=2)	U8	-	2
0x06	PON_PDL	位置データが利用可能になるまでの、最長電源 ON 遅延	U8	ms	60
0x07		予備	U8	-	0
0x08	EN_TYP	エンコーダタイプ (ロータリ=0)	U8	-	0
0x09	POS_NUM	位置の値 (1 位置)	U8	-	1
0x0A	MT_LEN	データ長 (マルチターン)	U8	bit	表B
0x0B	MT_FMT	データ形式 (マルチターン)	U8	-	表B
0x0C	CO_LEN	データ長 (粗)	U8	bit	0
0x0D	CO_FMT	データ形式 (粗)	U8	-	0
0x0E	FI_LEN	データ長 (精)	U8	bit	表B
0x0F	FI_FMT	データ形式 (精)	U8	-	0
0x10~0x13	MT_CNT	識別可能な回転の数	U32	カウント	表B
0x14~0x17	SIP_CNT	1回転あたりの信号周期数	U32	PPR	1
0x18~0x1B	SIP_RES	分解能係数 (内挿の最下位ビット)	U32	カウント	表B
0x1C~0x1F	CPOLY	CRC 多項式 (0x43 の 32:1)	U32	-	0x21
0x20~0x23	CSTART	CRC の開始値	U32	-	0
0x24~0x25	ABS_ACU	絶対精度	U16	LSB/2	表C
0x26~0x27	REL_ACU	相対精度	U16	LSB/2	0
0x28~0x29	SPD_ACU	角速度依存精度	U16	LSB/2	0
0x2A~0x2B	HYST	ヒステリシス	U16	LSB/2	0
0x2C~0x2D	SPD_MAX	最高回転速度	U16	1/min	10000
0x2E~0x2F	ACC_MAX	最高回転加速度	U16	1/min²	0
0x30~0x31	TMP_MIN	最低動作温度	U16	К	243 (233)
0x32~0x33	TMP_MAX	最高動作温度	U16	К	358 (378)
0x34~0x35	VLT_MIN	最低動作電圧	U16	mV	4500
0x36~0x37	VLT_MAX	最高動作電圧	U16	mV	5500
0x38~0x39	CUR_MAX	最高電流消費量	U16	mA	150
0x3A~0x3E		予備	U8		0
0x3F	CHKSUM	チェックサム (バンク内のバイトの総計)	U8	-	XX

U16、U32 のデータは、ビッグエンディアン (最小値アドレスにおける最大値バイト) として保存される。

表 B

エンコーダの	EDS BP3 パラメータ						
タイプ	BP_ID	MT_LEN	MT_FMT	FI_LEN	MT_CNT	SIP_RES	
17bit ST	0x6213	0	0	17	0	131072	
17bit MT	0x6223	16	1	17	65536	131072	
18bit ST	0x6214	0	0	18	0	262144	
18bit MT	0x6224	16	1	18	65536	262144	
19bit ST	0x6215	0	0	19	0	524288	
19bit MT	0x6225	16	1	19	65536	524288	
20bit ST	0x6216	0	0	20	0	1048576	
20bit MT	0x6226	16	1	20	65536	1048576	

表C

エンコーダの	シン	ノグルターン	の分解能 (bit)	
サイズ	17	18	19	20
080	34	67	135	270
064	37	73	146	293
053	42	83	167	334
049	41	81	163	Х
039	53	107	214	Х
029	55	110	X	Х

バンク切換え

BiSS レジスタは、64 バイト単位でバンクにグループ化されている。各バンク内の各レジスタには、0x00~0x3F のアドレスが割りつけられている。 バンクは、バンク選択レジスタ(アドレス 0x40)で選択してアクセスする。バンク切換えの詳細については、iC-Haus 社が提供の文書を参照のこと。

読取りアクセス

AksIM-2 メモリ内のレジスタは、すべて読取り可能である。また、シーケンシャル読取りにも対応している。先頭アドレスから、64 バイト先まで読 取りができる。シーケンシャル読取りの詳細については、iC-Haus 社が提供の文書を参照のこと。

書込みアクセス

AksIM-2 メモリ内の書込み可能レジスタについては、「メモリマップ」表に記載する。書込みアクセスをロックすることで、バンク選択レジスタを除 くすべてのレジスタ (ユーザーメモリを含む) を書込み保護できる。シーケンシャル書込みは、ユーザーメモリでのみ可能であり、それ以外の場所 では拒否される。シーケンシャル書込みの詳細については、iC-Haus 社が提供の文書を参照のこと。

エンコーダの動作パラメータ

アドレス	データ型	アクセス	説明
0x4A~0x4B	U16	読出し	エンコーダステータス (下表参照)
0x4C~0x4D	S16	読出し	センサー温度 (°C)
0x4E~0x4F	U16	読出し	信号レベル
0x50~0x51	S16	読出し	回転速度 (rev/min)
0x52	U8	読出し	自己キャリブレーションの状態

エンコーダステータス (アドレス 0x4A~0x4B)

詳細ステ	詳細ステータス (パート 1)					
	b15	エラー: マルチターンカウンタの不一致。電源 OFF 中に、エンコーダが±90°より大きく回転した。このエラーをクリア するには、電源を OFF→ON する。				
	b14	エラー: 信号振幅が大きすぎる。リードヘッドとリングが近すぎるか、外部磁場が発生している。				
	b13	警告: 信号振幅が大きすぎる。リードヘッドとリングが近すぎるか、外部磁場が発生している。				
	b12	エラー: 磁気センサーエラー。エンコーダの電源を OFF→ON する。				
	b11	エラー: センサー読取りエラー。原因として、電気的な干渉、グランドループまたは無線周波妨害が考えられる。				
	b10	エラー: エンコーダの設定が不正。				
全般ステ	ータス					
	b9	エラー。このビットが設定されている場合、位置データは無効。				
	b8	警告。このビットが設定されている場合、エンコーダの動作状態が限界に近づいている。位置データが有効。分解能および/または精度が仕様以下の可能性がある。				

エラーおよび警告ビットは同時に設定されることがあるが、この場合はエラービットが優先する。

全般ステータスビットの値は、リードヘッド LED の色で示される。

ニュラー、オレンジー警告、緑ー正常動作、および消灯=電源 OFF である。 警告 キャはエラーフテータフは 翌細フェータフパル アトロギー

警	警告またはエラーステータスは、詳細ステータスピットでより詳細に定義される。					
詳細ステータ	タス (パー)	► 2)				
b ⁻	7	警告: 信号振幅が大きすぎる。リードヘッドとリングが近すぎるか、外部磁場が発生している。				
be	6	警告: 信号振幅が小さすぎる。リードヘッドとリング間の距離が遠すぎる。				
b!	5	エラー: 信号消失。リードヘッドとリングのアライメントが不良か、リングが損傷している。				
b ₄	4	警告: 温度範囲外。リードヘッド温度が仕様範囲外。				
b:	3	エラー: 電源エラー。リードヘッドの電源電圧が仕様範囲外。				
b	2	エラー: システムエラー。回路内の不具合または不正なキャリブレーションデータが検出されている。システムエラー ビットをリセットするには、立ち上がり時間が 20ms より短い間に電源を OFF→ON する。				
b:	1	エラー: 磁気パターンエラー。漂遊磁場が存在しているか、金属粒子がリードヘッドとリングの間に存在しているか、 リードヘッドとリングの径方向のずれが公差外になっている。				
b	0	エラー: 加速度エラー。位置データの変化が速すぎる。漂遊磁場が存在しているか、金属粒子がリードヘッドとリングの間に存在している。				

センサー温度 (アドレス 0x4C~0x4D)

センサーの温度 (°C)。平均としてこの値は、周囲温度より 10~15℃高くなる。読取り値の公差は±5℃である。

信号レベル (アドレス 0x4E~0x4F)

信号レベルから、エンコーダの取付け高さを計算できる。

信号強度は、リードヘッドとリング間の距離に比例する。実際の距離を算出するには、下記の式を用いること。 $AirGap = K \times (N-Ln (Sqrt (SignalLevel)))$

K および N は、エンコーダのサイズに依存。

エンコーダのサイズ	K	N
029	188.42	8.37
039、049	167.24	8.647
053、064、080	142.08	9.023

回転速度 (アドレス 0x50~0x51)

エンコーダの回転速度 (rev/min)。

自己キャリブレーションの状態 (アドレス 0x52)

8ページの自己キャリブレーションを参照のこと。

AksIM-2 のプログラミング

AksIM-2 リードヘッドには、ポジションオフセット (エンコーダの原点位置)、マルチターンカウンタ (オプション)、およびレジスタ書込み保護をプログラムできる。また、自己キャリブレーションや、出荷時設定へのリセットも可能である。

レジスタに書き込まれた数値は、不揮発性メモリに保存されるまで有効にならないが、マルチターンカウンタの値は例外で、即座に有効になる。

ポジションオフセット (エンコーダの原点位置)

ポジションオフセットは、バンク 0 のレジスタ 0x00、0x01、0x02、0x03 にビッグエンディアン形式でマッピングされている。ユーザー側ではまず、これらのアドレスに新しいポジションオフセットの個々のバイトをカウント単位で書き込む必要がある。その後に、それらを読み込んで、適切な書込み動作の検証をすることができる。この時点では、新しいポジションオフセットがまだ有効になっていない。有効にするには、まず KEY を書き込んでコマンドレジスタをロック解除する。次に、プログラムされたデータを不揮発性メモリに保存するためのコマンドをレジスタに書き込む。

KEY (0xCD) をアドレス 0x48 に書き込む

プログラムされたデータを不揮発性メモリに保存するためのコマンド ASCII 'c' (0x63) を アドレス 0x49 に書き込む

- 注: パラメータの不揮発性メモリへの保存には 80ms 要し、その間は位置データが有効にならない。マルチターンカウンタ使用時は、回転数が±300rev/min を超えない場合に限り、カウンタが有効である。
- 注: 適用されるポジションオフセットが実際のエンコーダ分解能よりも大きいか、ゼロよりも小さい場合には、値 0 が新しいオフセット として設定される。

ポジションオフセットは変化しない。原点位置を大きな値に変更した後、加速度エラーが発生することがある。 ポジションオフセットを新たに設定したら、その都度マルチターンカウンタの値 (存在する場合) を確認または調整すること。

マルチターンカウンタ

マルチターンカウンタのプリセットは、マルチターン仕様の AksIM-2 でのみ可能である。プリセットは、バンク 0 のレジスタ 0x14、0x15、0x16、0x17 にビッグエンディアン形式でマッピングされている。ユーザー側でまず、これらのアドレスに新しいマルチターンカウンタの個々のバイトを書き込む必要がある。その後に、それらを読み込んで、適切な書込み動作の検証をすることができる。この時点では、新しいマルチターンカウンタは有効になっていない。有効にするには、まず KEY を書き込んでコマンドレジスタをロック解除する。次に、マルチターンカウンタの値を有効化するためのコマンドをレジスタに書き込む。

KEY (0xCD) をアドレス 0x48 に書き込む

マルチターンカウンタを有効化するためのコマンド ASCII 'm' (0x6D) をアドレス 0x49 に書き込む

注: マルチターンカウンタに 65535 (符号なし) より大きい値を書き込んでも破棄される。

自己キャリブレーション

AksIM-2 の自己キャリブレーションの最適なタイミングは、リードヘッドの組立て後である。自己キャリブレーションにより、取付けの状態に左右されるエンコーダの精度が向上する。ユーザー側でまず、KEY (0xCD) をキーレジスタ (アドレス 0x48) に書込んでコマンドレジスタをロック解除する必要がある。次に、自己キャリブレーションを開始するためのコマンド SelfCal (0x41) をコマンドレジスタ (アドレス 0x49) に書き込む。この処理中は、BiSS プロトコルを介した通信はできず、入力されるクロックに対して AksIM-2 は一切応答しない。処理が完了すると、LED が 3 秒間高速点滅する。自己キャリブレーションが成功した場合の LED 点滅色は緑、失敗した場合は赤色である。その後、BiSS プロトコルによる通信が可能になる。なお、自己キャリブレーションの状態は、レジスタ 0x52 から読み出し可能である。自己キャリブレーションの状態は、カウンタ (2bit)とのステータスビット (2bit) から構成される。カウンタは、自己キャリブレーションが完了するたびにカウントアップする。エラービットは成否を表し、失敗の場合は理由を表す。

自己キャリブレーションの前には、レジスタ 0x52 から状態が読み込まれる必要がある。コントローラ側では、現在の自己キャリブレーションカウンタ (b1~b0) を記憶しておく必要がある。自己キャリブレーションコマンドの送信後、LED により処理完了が示される。LED の点滅が確認できない場合には、リードヘッドとの通信が再び確立されるまで、リードヘッドに BiSS プロトコルを介してポーリングが行われ、最大 10 秒間待機する。その後、自己キャリブレーションのステータスレジスタが再度読み込まれる。自己キャリブレーションカウンタが (前回の読込み時から) 1 増分していれば、自己キャリブレーションが完了している。自己キャリブレーションが成功していれば、ステータスビット (b3、b2) はどちらも 0 になる。なお、ファーム ウェア 2.5 以降では、自己キャリブレーションによってリングの偏心とリードヘッドの位置に関するデータが返される。

自己キャリブレーション時の回転速度および回転方向は重要でなく、一定でなくても問題はないが、コマンド送信から 10 秒以内に、シャフトが360°より大きく回る必要がある。ファームウェア 2.5 以降では、180°以上の部分円弧で自己キャリブレーションが可能ではあるが、360°完全に回転させることによって最良のキャリブレーション結果を取得できる。

アドレス	タイプ	範囲	単位	内容/用途
入力				
0x19	U16	180~360、デフォルト は 360	0	キャリブレーション用の部分円 弧長
0x48	U8	0xCD	-	+-
0x49	U8	0x41	-	コマンド
出力				
0x1B	U16	0~500	μm	回転軸中心からのリングの偏心量
0x1D	U16	0~360	0	リングの偏心角度 (位相)
0x1F	S16	-500~500	μm	リードヘッドの径方向移動 (正=外側)
0x52	U8		bit	状態 (下表参照)

自己キャリブレーションの状態 (アドレス 0x52)

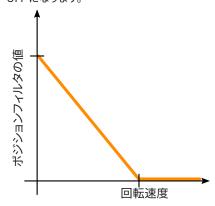
ビット	内容		
b7	予備		
b6	キャリブレーション実行済み (エラーマップ変更完了)		
b5	補正不要 (機械的な取付けが完璧)		
b4	円弧長パラメータ (0x19) が範囲外。		
b3	計算されたパラメータが範囲外。機械的な取付けが公差外。		
b2	タイムアウト。エンコーダのリングが 10 秒の間に完全に回転しなかった。		
b1~b0	カウンタ		

KEY (0xCD) をアドレス 0x48 に書き込む

自己キャリブレーションを開始するためのコマンド ASCII 'A' (0x41) をアドレス 0x49 に書き込む

ダイナミックフィルタリング

AksIM-2 では、ダイナミックローパスフィルタを使用して、計算された位置の値のノイズを低減している。 デフォルト値が大半の用途に適しているが、一部の極端なケースでは、性能を最大限に発揮するために多少の微調整が必要な場合がある。例えば、高精度が要求される低速および低加速度の用途では、分解能を高めるためにフィルタリングを強化してもよい。 逆に、高速かつ動的な用途では、遅延を減らし、帯域幅を広げるために、場合によってはフィルタリングを弱める必要がある。


フィルタ設定

アドレス	名称	デフォルト値	範囲	説明	
0x04~0x07	ポジションフィルタの値	180	0~240	エンコーダ静止時のポジション フィルタの最大値 0=フィルタ無効	
0x08~0x0B	ポジションフィルタの 速度	100	0~99 100~10,000	ポジションフィルタ無効時の エンコーダの速度 100 未満: フィルタが一定	
0x0C~0x0F	速度フィルタの値	150	0~240	速度フィルタの値。 0=フィルタ無効	
0x10~0x13	速度フィルタの速度	0	0	未使用	

ポジションフィルタ

エンコーダの位置の値は、エンコーダの内部サイクルごとにローパスフィルタに渡される。これにより、エンコーダの低速時または減速時、位置値の滑らかさが増し、分解能が向上する。

ポジションフィルタの値 (0x04~0x07) を大きくすると、フィルタの強度が増し、カットオフ周波数が減る。設定値は、エンコーダの静止時に適用される。回転数の増加に伴い、フィルタの強度が直線的に低下する。回転速度がポジションフィルタの速度 (0x08~0x0B) より大きいと、フィルタがOFF になります。

速度フィルタ

内部計算された速度 (回転速度) がローパスフィルタを通じて渡される。これにより、BiSS や UART プロトコルにおける位置の値の滑らかさが増す。速度フィルタの値 (0x0C~0x0F) を大きくすると、フィルタの強度が増し、カットオフ周波数が減る。フィルタは一定であり、回転数に依存しない。速度フィルタの速度 (0x10~0x13) は使用されず、ゼロが適用される。

警告: フィルタの値を変更すると、エンコーダやクローズド制御ループが不安定になることがある。 使用に際しては慎重を期し、考えられるすべての状況を評価した上で、新しい値を維持するようにすること。

新しい値を不揮発性メモリに記憶するには、以下のシーケンスを使用する。 KEY (0xCD) をアドレス 0x48 に書き込む プログラムされたデータを不揮発性メモリに保存するためのコマンド ASCII 'c' (0x63) を アドレス 0x49 に書き込む

注: パラメータの不揮発性メモリへの保存には 80ms 要し、その間は位置データが有効にならない。マルチターンカウンタ 使用時は、保存中に回転数が±300rev/min を超えない場合に限り、カウンタが有効である。

出荷時設定へのリセット

出荷時設定にリセットすると、プログラムされたすべてのパラメータがデフォルト設定に戻る。まず KEY を書き込んでコマンドレジスタをロック解除する。次に、リードヘッドを出荷時設定にリセットするためのコマンドをレジスタに書き込む。

KEY (0xCD) をアドレス 0x48 に書き込む

リードヘッドを出荷時設定にリセットするためのコマンド ASCII 'r' (0x72) をアドレス 0x49 に書き込む

注: パラメータの不揮発性メモリへの保存には 80ms 要し、その間は位置データが有効にならない。マルチターンカウンタ使用時は、保存中に回転数が±300rev/min を超えない場合に限り、カウンタが有効である。

警告: 書込み保護を有効にした状態では、エンコーダの出荷時設定へのリセットはできない。

書込み保護

書込み保護により、AksIM メモリマップ内で、バンク選択レジスタ以外の書込み可能レジスタへの書込みをロックできる。書込み保護は、バンク 0 のレジスタ 0x2E にマッピングされている。デフォルト値は 0x5A で、0x5A 以外の値を書き込むことで、書込み保護を有効にできる。 以降、バンク選択レジスタ以外のレジスタに書込みができなくなる。 レジスタはすべて、書込み不可のレジスタとして動作することになる。

プログラムされたデータを不揮発性メモリに保存するためのコマンド ASCII 'c' (0x63) を アドレス 0x49 に書き込む

- 注: パラメータの不揮発性メモリへの保存には 80ms 要し、その間は位置データが有効にならない。マルチターンカウンタ使用時は、回転数が±300rev/min を超えない場合に限り、カウンタが有効である。
- 注: 書込み保護を有効にした後は、リードヘッドをプログラミングできないが、いずれのレジスタも読取りは可能である。

ユーザーメモリ

バンク 24~87 のレジスタ (書込み可能、4kB) がユーザーメモリとしてマッピングされている。ユーザー側でこれらのレジスタに任意のデータを書き込み、その後、不揮発性メモリに保存する必要がある。この処理を行うには、まず KEY を書き込んでコマンドレジスタをロック解除し、次に、ユーザーデータを不揮発性メモリに保存するためのコマンドをレジスタに書き込む。

なお、ユーザーメモリにはシーケンシャル書込みが可能である。1回のアクセスで、複数の連続するレジスタに書込みができる。シーケンシャル書込みの詳細については、iC-Haus 社が提供の文書を参照のこと。

KEY (0xCD) をアドレス 0x48 に書き込む

ユーザーデータを不揮発性メモリに保存するためのコマンド ASCII 'u' (0x75) を アドレス 0x49 に書き込む

注: 書込み保護を有効にすると、ユーザーメモリへの書込みはできなくなる。

BiSS-C レジスタアクセスに関する追加資料

BiSS-C レジスタへのアクセスについては、iC-Haus 社が提供する文書に詳述されている。

BiSS プロトコルについて

BiSS EDS の共通部分

BiSS 標準エンコーダプロファイル (BP3)

BiSS レジスタアクセスの詳細 1

BiSS レジスタアクセスの詳細 2

RLS はレニショー株式会社の関連会社です。

連絡先

レニショー株式会社

東京オフィス 名古屋オフィス 〒456-0036

東京都新宿区四谷4-29-8 愛知県名古屋市熱田区熱田西町 1-21

レニショービル レニショービル名古屋 T 03-5366-5316 T 052-211-8500 F 03-5366-5320 F 052-211-8516

www.rls.si

本文書は、英語版から翻訳して作成した資料です。