

XCal-View使用手册

XCal-View简介

关于XCal-View

雷尼绍XCal-View软件的编写目的是直接取代之前作为Laser10、LaserXL和RotaryXL软件包集成部分提供的分析软件包。

XCal-View分析软件支持从Laser10、LaserXL和RotaryXL软件进行数据采集生成的线性、角度和直线度输出文件。

与之前的雷尼绍分析软件相比,XCal-View增加了许多附加功能,例如,比较数据文件、创建客户报告、生成通用误差补偿文件及对数据组进行零点偏置;这些功能都显示在全新的用户界面上。

免责声明

RENISHAW已尽力确保发布之日本手册的内容准确无误,但对其内容不做任何担保或陈述。RENISHAW不承担任何由本文档中的不准确之处以及无论什么原因所引发的问题的相关责任。

雷尼绍保留更改本手册及其所述产品的权利,恕不另行通知。

版权

Copyright ©2014 Renishaw 版权所有 本帮助手册未经雷尼绍公司事先书面许可,不得以任何形式、部分或全部复制或转换为任何其他媒介或语言。 出版本文档所含材料并不意味着Renishaw plc放弃对其所拥有的专利权。

商标

RENISHAW标识中使用的RENISHAW和测头图案为Renishaw plc在英国及其他国家或地区的注册商标。apply innovation及雷尼绍其他产品和技术的名称与标识为Renishaw plc或其子公司的商标。

Windows®为Microsoft Corporation公司在美国及/或其他国家或地区的注册商标。

Adobe®和Acrobat®为Adobe Systems公司在美国及/或其他国家或地区的商标或注册商标。

本文档中使用的所有其他品牌名称和产品名称均为其各自所有者的商品名、商标或注册商标。

计算机配置要求

如需了解当前最低计算机配置要求,请在雷尼绍网站查阅XL-80校准软件页面。

XCal-View的附加功能(与雷尼绍现有分析软件相比)

XCal-View软件的主要功能

与雷尼绍现有分析软件相比,XCal-View包含以下附加功能。

特征	雷尼绍现有分析软件	XCal-View
零点偏置功能	x	~
通用误差补偿	\checkmark	~
测试比较功能	x	~
PDF报告和打印	x	~
图形交互(选择平移/缩放等)	x	~
报告自定义(添加标识等)	x	\checkmark

支持的分析标准

可以根据以下国家或国际标准分析数据组。

ASME 5.54 1992 ASME 5.54 2005 GB 17421.2 2000 ISO 230-2 1997 ISO 230-2 2006 ISO 230-6 2006 JIS B 6192 1999 JIS B 6190-2 2008 VDI 3441 1977 VDI 2617 1989

雷尼绍软件之前支持而XCal-View不支持的其他标准,可以从<u>www.renishaw.com/lasercalsupport</u>下载雷尼绍分析软件进行查看。

雷尼绍还提供符合本公司要求的、全面的报告格式 — Renishaw 2012,可作为这些标准的另一选择;这一报告格式为所用的数据组提供更大的灵活性。

XCal-View软件安装

按照光盘上的安装向导进行安装。

软件会将快捷方式添加到开始菜单(见下文)和桌面上。

安装XCal-View软件

1. 开启计算机电源,等待它启动进入Windows,然后将光盘插入光驱。安装程序将自动运行。如果安装程序无法自动运行, 请从计算机任务栏中选择"开始/运行",进入"运行"对话框。点击"浏览"按钮,通过"浏览"对话框找到安装光盘上的 Setup.exe文件。双击Setup.exe。在"运行"对话框中选择"确定",启动软件安装程序。 2. 向导显示一系列对话框,自动引导您逐步完成安装过程。按照每个屏幕上的指示操作,并点击"下一步",转至下一步。点击"取消"将退出安装程序。

运行XCal-View软件

开启计算机电源,等待它启动进入Windows。

在Windows任务栏中,点击"开始"按钮,然后从"所有程序/Renishaw XCal-View"菜单中选择XCal-View应用。

或者,还可以从LaserXL、Laser10或RotaryXL中选择分析按钮,并为支持的测量选项(如线性、角度、直线度或垂直度)选择一个数据文件来访问XCal-View。

激活软件

激活选项

XCal-View在使用之前需要激活。可以使用软件屏幕右下方的 🌌 按钮启动激活工具。

可提供两种选项:

a) 30天评估

该选项允许用户对雷尼绍XCal-View软件进行30天评估。选择此选项后,软件的功能与完整版相同,不会受到限制。 注:一旦30天评估激活,到期后此选项将不可用。

b) 激活软件

此选项仅适用于已购买完整版软件,并具有激活软件的有效密钥的用户。

一旦激活软件,点击 🌌 按钮将显示如下选项

停用软件

这允许已购买雷尼绍XCal-View软件的用户停用并在另一台计算机上重新激活软件。

注册软件

第一次激活软件,需要填写详细注册信息。填写详细信息后,选择"注册"继续激活软件。

Activation		
Registration details		
Activation ID Contact name Contact email address		
Company name		
Country	United Kingdom	
Serial number	XL Laser system	
1	1	

一旦完成注册,选择两种激活过程之一。

Activa	ation	
Activ	ation deta	ils
	×	Automatic Requires working internet connection on this computer
	\bowtie	Manual Activation processing by manually transferring the files to the renishaw website
	/	

自动激活

自动模式需要已安装XCal-View软件的计算机具有internet连接。XCal-View将自动激活并重新启动供随时使用。这是激活软件最简单的方式。

手动激活

"手动激活"生成一个文件。该文件必须复制到具有internet连接的计算机上,并通过该计算机上载。随后将显示"手动激活"对话框(如下所示):

按照屏幕上的说明,生成激活请求。注:"请求文件"必须通过具有internet连接的计算机上载 到<u>renishaw.com/licensing/xcalview</u>。然后会返回一个响应文件。

接收到"响应文件"后

通过记忆棒(或类似设备)将"响应文件"传输到已安装XCal-View的计算机上。浏览找到"响应文件"并点击绿色箭头。

XCal-View软件入门指南

主屏幕

显示XCal-View主界面窗口。

因为是刚开始使用XCal-View软件,"设定"面板也会显示在屏幕上。

命令栏

"命令栏"位于屏幕的右下方,包含以下按钮:

设定

提供更改分析设定的选项,例如,测量单位、误差单位、语言、在文档中应用个性化标识等。

激活工具

帮助

启动XCal-View手册。

关于XCal-View

▲ 显示许可协议详细内容、剩余的评估天数、安装的分析软件包、"检查更新"链接。

设定

第一次运行软件时,会提示您根据个人偏好更改软件设定。

通过高亮显示的"设定"选项卡和向下箭头,可更改以下设定:

🖍 Linear a	ind Straightness units				
Error	micrometres (µm)	•	Precision	1	
Target	millimetres (mm)		Precision	4	
🖌 Angular	units				
Error	arcseconds (arcsecs)	•	Precision	•	
Target	degrees (*)		Precision	0	
Squarer	iess units				
Units	micron/metre (µm/m)	•	Precision	4	
🌩 Environ	ment units				
Temperature	Cehius (*C)		Pressure	millibar (mbar)	
Coefficient	ppm per Degree Celsius (ppm/*C)		Humidity	RH (%RH)	

注:更改这些设定可能会对分析精度产生影响。

"单位"选项卡

- 线性和直线度单位
- 角度单位
- 垂直度单位
- 环境单位

"应用"选项卡

- 单位标识(用在报告上)
- 语言

"高级配置"选项卡

- 允许去除原始数据/直线度比较视图的斜率
- 垂直度棱镜误差
- 文件编码语言
- 动态噪声消除

支持的分析模式

当前支持的分析模式如下所示,这些模式将分析通过Laser10、LaserXL和RotaryXL采集的数据:

- 线性
- 角度
- 平面度
- 动态
 - 动态测量
 - FFT分析
- 直线度
- 垂直度
 - 通过直线度测试
- 线性平行度
- 旋转平行度
- 对角线分析
 - 体对角线— 面对角线
 - 一面刈用設

雷尼绍软件之前支持而XCal-View不支持的其他标准,可以从<u>www.renishaw.com/lasercalsupport</u>下载雷尼绍分析软件进行查看。

加载数据文件

Analysis Linear Angular Flatness Squareness Report Innovation* Market Market Analysis Linear parallelism Report Innovation* Market Market Analysis Market Market Market Analysis Market Market

在主页,为您想要打开的数据选择相关的分析模式(例如,打开角度.rta文件)。

使用文件浏览器选择您想要分析的数据文件。数据文件将打开,在应用任何分析格式前显示原始数据图。

数据回看和分析

回看

测试浏览器

测试浏览器面板位于软件左侧,包含所选测试文件的详细信息。

测量

显示所选结果文件的"曲线图"和"原始数据"表(如上所示)。

测试信息

包含与已执行校准相关的所有测试参数。

- 测试信息
- 机床信息
- 测试方法
- 测试参数
- 仪器设定
- 测试设备
- 软件信息

环境

包含校准期间从环境补偿单元(如果连接)接收的数据。

筛选数据运行次数

要使用户能够查看已采集的特定数据运行,可以筛选运行次数,以查看感兴趣的部分。

仅在"曲线图"模式或"原始数据"模式下使用"原始"标准查看时,可通过选择图形右侧"测试运行"屏幕上的选项来筛选运行次数。

选择所有 — 显示采集的所有数据

仅显示反向测试运行 — 仅显示在反向采集的运行

仅显示正向测试运行 — 使用该选项仅查看在正向采集的运行

转换选项 — 在所选的运行(打勾)和未选的运行(未打勾)之间切换

✓ Run1 (·) 手动选项 — 允许用户选择任何感兴趣的运行。只需点击方框选择/取消选择运行

打开标准测试

一旦从软件中打开测试,就可以利用软件支持的分析标准之一查看数据。分析标准可在左侧栏中找到,并可通过点击相应的选项卡进行选择。可根据相关的分析标准分析数据。

支持的分析标准

ASME 5.54 1992; ASME 5.54 2005; GB 17421.2 2000; ISO 230-2 1997; ISO 230-2 2006; ISO 230-6 2006; JIS B 6192 1999; JIS B 6190-2 2008; Renishaw 2012; VDI 3441 1977; VDI 2617 1989

切换数据视图

可使用数据图顶部的选项卡以不同的格式查看数据。格式选项因所选的分析标准的不同而不同。

t explorer	۰ ۲	Graph plan	Stations											D.
Messaments	ASME 5.54 2005	Harris		_		Value Freun	6 M 1	l s	tion (Sine)	fed.	Ma		Max	
Liven 2	100	Accuracy	040			0.01530								
Delemation	1000	Rep(+)												
	2900	Rep (-)				0.00579								
		Editoria	and repeatability			0.00050								
	<u> 22</u>	Contraction of the		_	_	1000	_	<u> </u>						_
	1907													
	50 ZB-Z	Forward	deviations (m	(limetres)										
	2504	(below)								Standard deviations				
	166	1.1	0.0000	-6.30350	-0.00180	-5-30270	-0.00180	-0.00090	4.00102	0.00075	0.00032	-0.00456		
	15 5 6332	- 2		0.00025	0.00010	0,00040	0.00180	0.00130	0.00052	0.00010	0.00301	-0.00117		
	1999	1	100,2500	-0.00500	-0.00360	-0.00480	-0.00270	-0.01290	-6.00178	0.000.08	-0.00053	-0.90703		
	125	4	450.3300	0.00060	0.00160	0.00050	0.00230	0.00230	0.00146	8.00088	0.00400	-0.00110		
	854499-2	- 5	601.1100	-0.00840	-0.00140	-0.00190	-0.00630	-0.00690	-0.00732	8.0008	-0.00409	-0.00995		
	2004		750.3096	-0.00490	-0.00309	-0.00470	-0.00340	-0.01230	-0.01380	0.00105	-0,00064	-0.00006		
		3	901.5500	-0.00630	-0.30550	-0.00560	-0.00430	-0.00530	-0.00486	0.00123	-0.00138	-0.00854		
	and the second se		1050.0300	-0.00550	-0.00360	-0.00500	-0.00230	-0.00230	-0.00374	0.00349	0.00072	-0.00820		
Zero point offset	2012		1211.9000	-0.09520	-0.00590	-0.00630	-0.00450	-0.00340	-0.00566	0.00183	-0.00057			
	140	10	1151,5600	-0.00740	-0.00550	-0.00540	-0.00100	-0.00220	0.00404	0.00157	0.00106			
Company	V0E3445	u	1500-4390	-4.90790	-0.00580	-0.00560	-0.00475	-0.06279	-6-86532	0.00185	0.00023	-0.05087		
Ellor Compensation	4.4													

曲线图选项

在XCal-View分析中更改图形样式

🖬 按钮 , 打开图形配置菜单。配置菜单为用户提供以下选项 :

a) "比例"选项卡

可单独选择所需的X和Y轴缩放比例类型,包括自动、手动或手动居中缩放选项。

- b) "显示"选项卡
- 显示图例 在图的右侧显示运行ID图例。
- 显示 在图上显示与比例相关的"背景网格"。
- 黑白 将所有的图形运行切换为黑白色。
- 线粗细 调整图形线条的宽度。
- 标记类型 选择原始数据图形和雷尼绍分析图形中使用的标记类型。

分析功能高亮显示

在分析结果表中选择"分析功能",以图表的方式高亮显示值在曲线图中的位置。

图形交互

用XCal-View分析测试时,可通过以下选项自定义图形查看方式:

以鼠标指针为中心缩放

将鼠标指针放在"曲线图"上,旋转滚轮。 按住control键,同时按下 + 或 – 按钮进行缩放。

缩放轴的比例

将鼠标指针放在所需轴上,点击鼠标左键,然后滚动鼠标滚轮。

对手动选择的区域进行缩放

按住鼠标滚轮,拖放选择要缩放的区域。 按住control键,同时在曲线图区域按下鼠标右键,拖放选择要缩放的区域。

向上或向下平移轴的比例

将鼠标指针放在所需轴上,按住鼠标右键,然后拖放轴。 将鼠标指针放在任一轴上,点击鼠标左键,同时按住control键并使用箭头键。

平移曲线图

将鼠标指针定位在曲线图上,按住鼠标右键进行拖放。 将鼠标指针放在曲线图上,单击左键。然后按下control键和箭头键。

查看点坐标和点序列详情

将鼠标指针放在曲线图的采集点上,按住左键查看信息。

还原为默认设定

将鼠标指针放在曲线图区域,双击鼠标滚轮。 将鼠标指针放在曲线图区域,按下control键并双击鼠标右键。 将鼠标指针放在曲线图区域并按下control-A。

图形交互(平板电脑特有功能)

缩放

使用屏幕上的"展开"和"收缩"手势进行缩放。

平移曲线图

可以使用屏幕上的"拖放"手势执行此操作。

创建客户报告

可通过两种方式创建报告:

- 将相关数据复制并粘贴到其他应用中进行编辑。
- 从XCal-View软件应用中创建已设置格式的PDF。

注:计算机上必须安装Adobe® Reader,以查看PDF报告。

复制和粘贴

可以从包含复制符号 🚺 的任意页面复制软件内的数据。

曲线图视图

原始数据视图

Managements	122 NAW	Craph plot	Rave data									Inte	uni:	a.			
Lines X	8.0	Raw data	e (micrometre	si								1 10					
Deformation	Retchoe 2012	1	Targets (mm) 6.0000	Ren1(+)	Ret101	Ren 2 (+) Ren -1.6	2(-) #un3(- 11 -2)	1 Run1() 32	Rank(+) R. -1.8	2.3 Fund	(+) Run3(-) 0.8 1.5		urd (+)	11			
	4041534	2	150,7190 306,8500	62 -50	94 -15	67 36	45 5	5.7 1 -0.8	18	34	13 59 29 48		und (-) und (-)				
	2992		458.3000	4.6	24	16	23 0	36	23	22	23 23	3	un2(-) un2(-)				
	ASME5.34		758.3000	-13	-5.0	-78	-1.0 -4.	-4.0	-14	40	23 -28		und (r.)				
	3845		101.5500	43	-54	-53 -34	48 48	-4.1 1 -4.4	-11	41	au -au au -au		unit (+) unit (+)				
	6617421.2 300	- 20	1201.9000	-42 -74	-61 -36	-59 -55	-10 -4.	-48	-45	-3.1	34 -22 22 -24		urð (+) urð (+)				
	144	ü	1506.4100														
	1290																
	160 230-3 2107								2			1					
	200 1907 1907 100 200-1 100 200-1			-	-	á	6	_	<	-	6	1			ĸ	L	
en; point uffset	100 100 230-3 3887 100 230-2 3996				A	B Targets	c	•	E	F	G	н	I	J	ĸ	L	
ns point affant	000 1007 1007 1007 1007 1007 1007 1007			1	A Index	B Targets (mm)	C Run 1 (+)	D Run 1 (-)	E Run 2 (+)	F Run 2 (-)	G Run 3 (+)	H Run 3 (-)	l Run 4 (+)	J Run 4 (-)	K Run 5 (+)	L Run 5 (-)	
en point affret errepsen	80 280-2 10 280			1 2 3	A Index	B Targets (mm) 1 (2 150.7)	C Run 1 (+) -2.6 0.2	D Run 1 (-) 2.3 5.4	E Run 2 (+) -1.6 0.7	F Run 2 (-) 1.1 4.6	G Run 3 (+) -2.7 0.4	H Run 3 (-) 3.2 5.7	l Run 4 (+) -1.8 1.8	J Run 4 (-) 2.3 5.4	K Run 5 (+) -0.9 1.5	L Run 5 (-) 1.5 5.9	
ers point attact errigioni rear Companyation	80 280-3 3007 100 280-3 3008 100 280-3 3008 100 280-3 3008 100 280-3 3008			1 2 3 4	A Index	8 Targets (mm) 1 (2 150.71 3 300.85	C Run 1 (+) -2.6 0.2 -5	D Run 1 (-) 2.3 5.4 -1.5	E Run 2 (+) -1.6 0.7 -3.6	F Run 2 (-) 1.1 4.6 -1	G Run 3 (+) -2.7 0.4 -4.8	H Run 3 (-) 3.2 5.7 -0.8	I Run 4 (+) -1.8 1.8 -2.7	J Run 4 (-) 2.3 5.4 -2.6	K Run 5 (+) -0.9 1.5 -2.8	L Run 5 (-) 1.5 5.9 -0.8	Served Serve
ers point ather anguns mar Compensation	50 290-3 3997 200 290-2 2008 2008 2008 2008 2008 2008 2008 2			1 2 3 4 5	A Index	8 Targets (mm) 1 (2 150.71 3 300.85 4 450.32	C Run 1 (+) -2.6 0.2 -5 0.6	D Run 1 (-) 2.3 5.4 -1.5 2.4	E Run 2 (+) -1.6 0.7 -3.6 1.6	F Run 2 (-) 1.1 4.6 -1 2.1	G Run 3 (+) -2.7 0.4 -4.8 0.5	H Run 3 (-) 3.2 5.7 -0.8 3.6	I Run 4 (+) -1.8 1.8 -2.7 2.3	J Run 4 (-) 2.3 5.4 -2.6 2.2	K Run 5 (+) -0.9 1.5 -2.8 2.3	L Run 5 (-) 1.5 5.9 -0.8 2.9	
en poist alles engens ner Campanation ISHANNE	2022 1997 1997 1997 1997 1997 1997 1997 19			1 2 3 4 5 6	A Index	8 Targets (mm) 1 (2 150.77 3 300.85 4 450.33 5 601.13	C Run 1 (+) -2.6 0.2 -5 0.6 -8.4	D Run 1 (-) 2.3 5.4 -1.5 2.4 -9	E Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4	F Run 2 (-) 1.1 4.6 -1 2.1 -9.4	G Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8	H Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1	i Run 4 (+) -1.8 1.8 -2.7 2.3 -6.1	J Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3	K Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9	L Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8	
uro point utitut inny company inny Companyation ISHAWCO	2002 3007 3007 3007 3002 3000 3000 3000			1 2 3 4 5 6 7	A	8 Targets (mm) 1 (2 150.77 3 300.85 4 450.33 5 601.11 6 750.33	C Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -4.9	D Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9	E Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7	F Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9	G Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7	H Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4	I Run 4 (+) -1.8 1.8 -2.7 2.3 -6.1 -3.4	J Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3	K Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3	L Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9	
ere point affret ampen met Compensation ISHAW& Novela	2002 3007 3007 3007 3002 3000 3000 3000			1 2 3 4 5 6 7 8	A	8 Targets (mm) 1 (2 150.77 3 300.82 4 450.33 5 601.11 6 750.31 7 901.55	C Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -8.4 -4.9 -6.3	D Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9 -5.8	E Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7 -5.1	F Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9 -5.6	G Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7 -5.6	H Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4 -4,7	I Run 4 (+) -1.8 1.8 -2.7 2.3 -6.1 -3.4 -4.1	J Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3 -4.2	K Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2	L Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -3.3	
res point affect Company Inter Companyation	222 305 305 305 505 505 505 505 505 505 505			123456789	A Index	8 Targets (mm) 1 (2 150.77 3 300.85 4 450.32 5 601.11 5 601.11 6 750.33 7 901.55 8 1050.02	C Run 1 (+) -2.6 0.6 -8.4 -8.4 -4.9 -6.3 -5.5	D Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9 -5.8 -5.6	E Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7 -5.1 -3.6	F Run 2 (-) 1.1 4.4.6 1 2.1 -9.4 -5.9 -5.6 -4.8	G Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7 -5.6 -5	H Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4 -4,7 -4,4	1 Run 4 (+) -1.8 -2.7 2.3 -6.1 -3.4 -4.1 -2.3	J Run 4 (-) 2.3 -2.6 2.2 -8.3 -4.3 -4.3 -4.2 -4.4	K Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2 -2.3	L Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -3.3 -2	
Compose Compose Since Composedion ISHAWCO ISHAWCO	20 2333 2387 2387 2002 2002 2002 2002 2002 2002 2002 20			1 2 3 4 5 6 7 8 9 10	A Index	8 Targets (mm) 1 (2 150.7) 3 300.82 4 450.31 5 601.11 5 601.11 5 6070.31 7 901.53 8 1050.02 9 1201.5	C Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -4.9 -6.3 -5.5 -8.2	D Run 1 (-) 2.3 5.4 -15 2.4 -9 -5.9 -5.8 -5.6 -6.1	E Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7 -5.1 -3.6 -5.9	F Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9 -5.6 -4.8 -5	G Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7 -5.6 -5 -5.4 -5.3	H Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4 -4.7 -4.4 -4.8	1 Run 4 (+) -1.8 -2.7 2.3 -6.1 -3.4 -4.1 -2.3 -4.5	J Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3 -4.3 -4.2 -4.4 -3.1	K Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2 -2.3 -3.2 -3.4	L Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -3.3 -2 -2 -2	
Zero point affant Company Emar Companyation ISSHAWA	2012 2013 2007 2007 2007 2007 2007 2007 2007 200			1 2 3 4 5 6 7 8 9 10 11	A	8 Targets (mm) 1 (2 150.71 3 300.82 4 450.31 5 601.11 6 750.31 7 901.55 8 1050.00 9 1201.5 10 1351.56	C Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -8.4 -6.3 -5.5 -6.3 -5.5 -8.2 -7.4	D Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9 -5.9 -5.6 -6.1 -5.6	E Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7 -5.1 -3.6 -5.9 -5.5	F Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9 -5.6 -4.8 -5.9 -5.6 -4.8 -5 -4.6	G Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7 -5.6 -5 -5 -5.4	H Run 3 (-) 3.2 5.7 -0.9 3.6 -8.1 -4 -4.7 -4.4 -4.8 -2.9	I Run 4 (+) -1.8 -2.7 2.3 -6.1 -3.4 -4.1 -2.3 -4.5 -3.7	J Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.2 -4.3 -4.2 -4.4 -3.1 -2.8	K Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2 -2.3 -3.4 -2.2	L Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -3.3 -2 -2 -2 -2 -1.4	

"回看"与"分析"中都有"复制和粘贴"选项。

创建PDF:

可通过点击任意分析屏幕中的Adobe®符号 2 按钮,创建PDF报告。这允许您进一步选择Adobe选项,例如,保存和打印。或者,点击 2 按钮,直接进行打印。

添加个性化单位标识

可以在XCal-View生成的报告中添加个性化单位标识。

添加标识

在屏幕右下方的"命令栏"中选择"设定"图标。

将打开"XCal-View设定"对话框。 在该对话框中选择"应用"选项卡,然后浏览找到您的个性化标识。 注:标识的大小应为200 x 50像素,软件将放大或缩小所选标识的比例,使其符合要求。

Settings	
Units	Application Advanced configuration
Repo	n
Logo	RENISHAW apply innovation ¹⁰ Note: Image must be 200 x 50 pixels.
Language	English

您的个性化单位标识将显示在PDF和打印测试报告的右上角。

Renishar example.rtl Operator: R.	w Analysis- 2012:Line Typical test results T.S.	ar X			RENISHAW J
	Machine name Axis under test Serial number	Linear Example X 15345/Lin	Number of runs Targets Test date	5 Alternate bidir 11 Linear 1989-05-16T08:09:00	
	Test equipment	Serial no	mber	Calibration date	
	0.015	A	Zero line		
	1	1			

文件比较视图

比较数据文件

可以在XCal-View软件中比较数据文件。这在以下应用中非常有用,比如,误差补偿前后比较数据或查看线性定位中角度误差的影响。

比较文件:

然后,您可以在屏幕左侧,通过选择"添加"按钮 📑 并浏览找到所需数据文件,来添加附加测试。

选择后,两个数据组将显示在曲线图上。 **注**:如有必要,附加轴将显示在图形上。

从比较视图中删除单个"数据通道"

要删除单个"数据通道",请在"测试浏览器"面板上点击合适的数据文件,它会以橙色高亮显示(如下所示)。

选择"删除"图标 🧮

从比较视图中删除所有"数据通道"

要删除所有数据通道,只需点击左侧面板上的"重置"图标 20。 此时将询问您是否确认要删除所有数据文件。如确认,请点击"确定"。 注:这将只从比较屏幕上删除文件,而不会从计算机上删除原始文件。

零点偏置

零点偏置使用户能够偏移数据,从而使曲线显示的且有效的"0"位置与采集数据时设定的"0"位置不同。 这对于回转轴误差 补偿非常有用。

应用零点偏置

打开数据文件。

从"测试浏览器"面板底部,选择"零点偏置"按钮。

将显示"零点偏置"对话框:

V Zero point offset Zero point offset		
Apply zero Select run: Axis position:	point offset Averaging all runs 600	mm
		~

可选择以下项目配置"零点偏置",以符合用户要求:

选择运行

- 平均运行
- 从采集的结果中选择特定运行

轴位置

• 设定轴位置

以下示例是显示误差读数为~0 μm的0 mm点的原始文件(在校准过程中采集的数据)。 "零点偏置文件与上述示例是同一个文件,显示的是在第一次运行时600 mm点移至0 μm测量误差。

还原为原始设定

取消选中"应用零点偏置"将还原为原始设定。

误差补偿

使用展开 🕑 图标,展开软件屏幕左侧的"测试浏览器"面板。

展开后,将显示"误差补偿"按钮。

选择"误差补偿"按钮。

然后会显示"误差补偿"对话框。

误差配置

1) 补偿类型

支持两种补偿类型:

- 标准 包含补偿值和间隙值的一个表格
- 双向 单独的正向和反向值
- 2) 计算类型

支持两种计算类型:

- 增量式 相对于前一个补偿点计算的值
- 绝对式 补偿点作为绝对值计算
- 3) 补偿分辨率

生成补偿值的分辨率

4) 符号规约

将输出值配置为"误差值"或"补偿值"

5) 类型

定义所生成输出文件的类型

6) 参考位置

应用补偿的轴的零点位置

7) 补偿开始位置

应用补偿的轴的开始位置

8) 补偿结束位置

应用补偿的轴的结束位置

9) 补偿间距

每个补偿点的间距

在此处,必须对左侧面板上的补偿设定进行设定,以符合用户要求

保存配置设定

🚺 如果需要在将来也使用该配置设定,可使用"保存"图标进行保存。

加载配置设定

如果针对该机床已经存在保存的配置设定,可选择"加载配置"图标,并浏览找到所需配置。

LEC.REN和LEC2.REN选项

生成误差补偿文件时,可使用两种格式选项:LEC.REN和LEC2.REN。 这两种文件的不同之处在于显示补偿数据的格式不同。

选择最适合您的机床控制器要求的格式。

以下是两种误差补偿文件的示例:

LEC.REN

				LEC2.RE
File	******	ie rti		
PHS.	examp	ie.ru	File example rtl	
Table type	Cor	mbined table with backlash value		
Compensati	on type	Incremental	Table type Combined table with backlash value	
Compensati	on resolution	0.001 um	Compensation type Incremental	
Sign conven	tion	As compensation	Compensation resolution 0.001 µm	
Reference p	osition	0 mm	Sign convention As compensation	
Compensati	on start	0 m m	Reference position 0 mm	
Compensati	on end	-200 mm	Compensation start 0 mm	
Compensati	on spacing	10 mm	Compensation end -200 mm	
			Compensation spacing 10 mm	
Backlash val	lue 1	585 µm		
			Backlash value 1.385 µm	
			Axis position(mm)	
	(Compensation values	-200	
			-190	
No	Axis position	Combined	-180	
	(mm)	(0.001 µm)	-170	
1	-200	204	-160	
2	-190	204	-150	
3	-180	205	-140	
4	-170	204	-130	
3	-160	205	-120	
6	-150	204	-110	
7	-140	204	-100	
8	-130	205	-90	
9	-120	204	-80	
10	-110	204	-76	
11	-100	205	-60	
12	-90	264	-50	
15	-80	204		
	-60	204	-20	
16	-50	205	-10	
17	-10	204	0	
18	-30	204		
19	-20	205	Compensation values(0.001 µm)	
20	-10	204	204	
21	0	0	204	
			205	
			204	
			205	
			204	
			204	
			205	

在XCal-View中查看误差补偿文件

一旦设定了配置设定,请选择"生成"图标。

然后,可以通过"补偿表"格式或"图形补偿"格式查看误差补偿数据(如下所示):

在"图形补偿"视图中,图形将显示采集的原始数据结果和"预测的补偿后机床性能"。

保存误差补偿文件

生成误差补偿后,选择"保存"选项,以保存误差补偿文件。

figuration			ution table Gra	hical compensation	
		Backla			
ompensation type	Standard .				
doubting type	[bynemental]	Increm	ental Error comp	nsation table (µm)	
	and the second second	- Inter		Combined (Scale 8000)	
empensation resolution	0.001	1	-200.0000	204	
	-	2	-190.0000		
in commension	Par compensato		-180.0000		
pe .	LECREN		-170.0000		
			-160.0000		
lease soliton	0.0000	lan 1	-150.0000		
to the particular		, , ,	-140.0000		
impensation start	0.0000		-130.0000		
			-120.0000		
impensation end	-200	mm 30	-120.0000		
mpensation spacing	10		-100.0000	205	
	_		-90.0000	204	
			-80.0000	204	
			-70.0000	205	
			-60.0000	294	
			-50.0000	205	
		17	-40.0000	204	
	-	_	-30.0000	294	
Generate	Save	19	-20.0000	20	

然后,软件将允许您选择保存补偿表的位置。

检查更新

XCal-View现已包括自动检查软件更新版本的功能*。

上图显示了更新窗口示例。它告知用户可用软件更新的版本号,以及升级版的优势和新特性。

每次在具有internet连接的PC或便携式计算机上开启XCal-View后,自动更新功能将在后台进行检查,确保当前软件是最新版本。如果用户已经安装了最新版本,将不会显示通知提示,软件将正常加载。如果更新可用,将显示更新窗口(如上所示)。

窗口下部是"提醒我"功能。这允许在用户方便的时间提醒其执行更新。

A

重新访问更新窗口(如可用)。如果更新可用

"关于"按钮将包

*需要internet连接

含一个箭头。

可随时通过点击软件右下方的"关于"按钮

T +86 21 6180 6416 F +86 21 6180 6418 E shanghai@renishaw.com www.renishaw.com.cn

关于雷尼绍

雷尼绍是世界工程技术领域公认的领导者,在产品开发和制造技术的创新方面享有盛誉。自1973年成立以来,雷尼绍便致力于为全球不同规模的企业提供创新产品,旨在帮助企业提高生产力、改善产品质量并提供性价比优异的自动化解决方案。 遍布世界各地的子公司及经销商为用户提供优质服务和技术支持。

产品包括:

- 用于设计、原型制作及产品制造的金属快速成型和真空铸造技术
- 用于高精度线性、角度和旋转位置反馈的编码器系统
- 坐标测量机 (CMM) 与比对仪专用夹具系统
- 用于加工件比对测量的比对仪
- 用于恶劣环境的高速激光扫描系统
- 用于机器性能测量和校准的激光干涉仪与球杆仪
- 用于神经外科的医疗设备
- 用于数控机床工件找正、对刀及检测的测头系统和软件
- 用于材料无损分析的拉曼光谱仪
- 坐标测量机专用传感器系统和软件
- 坐标测量机和机床测头专用测针

如需查询全球联系方式,请访问www.renishaw.com.cn/contact

RENISHAW已尽力确保发布之日此文档的内容准确无误,但对其内容不做任何担保或陈述。RENISHAW不承担任何由本文档中的不准确之处以及无论什么原因所引发的问题的相关责任。

©2014 Renishaw plc 版权所有

Renishaw保留更改产品规格的权利, 恕不另行通知。

RENISHAW标识中使用的RENISHAW和测头图案为Renishaw plc在英国及其他国家或地区的注册商标。 apply innovation及Renishaw其他产品和技术的名称与标识为Renishaw plc或其子公司的商标。 本文档中使用的所有其他品牌名称和产品名称均为其各自所有者的商品名、商标或注册商标。