

XCal-View 使用者手冊

1

XCal-View 簡介

關於 XCal-View

Renishaw XCal-View 軟體是用於直接取代之前的分析套件。這些套件分別整合在 Laser10、LaserXL 與 RotaryXL 等套裝軟體內。

XCal-View 分析軟體支援從 Laser10、LaserXL、RotaryXL 擷取的雷射與旋轉輸出檔案, 以及來自 Ballbar Trace 軟體的輸出檔案。

XCal-View 擁有比之前 Renishaw 分析軟體更多的額外功能, 例如比較資料檔案、建立客戶報告、產生通用的誤差補償檔案以及資料集的 零點偏移, 所有項目均由全新使用者介面呈現。

免責條款

RENISHAW 竭力確保在發佈日期時,此份文件內容之準確性及可靠性,但對手冊內容之準確性及可靠性將不做任何擔保。RENISHAW 不就此文件內容之任何不正確所致之任何損失或損害承擔任何法律責任.

RENISHAW公司保留在無義務通知任何人的前提下而對本手冊進行改變的權利.

版權

Copyright ©2013-2015 Renishaw.保留所有權利。 未經 Renishaw 公司事先書面許可,不得以任何形式複製或重製本說明手冊之完整或部分內容傳送至任何其他媒體或轉換為其他語言.

出版本文件所含資料並不暗示 Renishaw 公司放棄對這些資料擁有的專利權。

商標

RENISHAW 及 RENISHAW 公司標誌中的測頭符號是 Renishaw plc在英國及其他國家的註冊商標。**apply innovation**, apply innovation, 及其他Renishaw產品和技術的名稱與命名是Renishaw plc及旗下子公司的商標。

Windows® 是 Microsoft 公司在美國及/或其他國家或地區的註冊商標。

Adobe® 及 Reader® 是 Adobe Systems 公司在美國及/或其他國家的註冊商標或商標。

本文件中使用的所有其他品牌名稱和產品名稱為各自所有者的商品名稱、服務標誌、商標或註冊商標。

PC 要求

如要取得最新的電腦最低規格, 請前往 Renishaw 網站的 XL-80 Calibration software 網頁。

更多超出Renishaw Analysis 的額外功能

XCal-View 軟體的重要功能

XCal-View 擁有下列額外功能, 並未包含在現有的 Renishaw Analysis 軟體內。

功能	Renishaw Analysis	XCal-View
「零點偏移」功能	х	\checkmark
「通用」誤差補償	\checkmark	\checkmark
「測試比較」功能	х	\checkmark
PDF 報告與列印	х	\checkmark
圖形互動(平移/縮放選擇等等)	х	\checkmark
自訂報表(新增公司徽標等等)	х	\checkmark

支援的分析標準

可根據下列國家與國際標準分析資料集。

ASME 5.54 1992 ASME 5.54 2005 GB 17421.2 2000 ISO 230-2 1997 ISO 230-2 2006 ISO 230-2 2014 ISO 230-6 2006 JIS B 6192 1999 JIS B 6190-2 2008 VDI 3441 1977 VDI 2617 1989 ISO 10791-6 2014

使用「Renishaw analysis」可檢視 Renishaw 軟體之前支援但 XCal-View 不支援的其他標準,如需使用「Renishaw analysis」可 從 <u>www.renishaw.com/lasercalsupport</u> 下載取得。

除了這些標準外, Renishaw 亦有提供自己的全方位報告格式可供選擇, 例如 Renishaw 2012 為已使用的資料集提供更大彈性。

XCal-View 軟體安裝

按照CD上的安裝精靈安裝軟體。

軟體將一個捷徑安裝到開始功能表上(請見下文),並將一個捷徑安裝到桌面上。

若要安裝 XCal-View 軟體

1.開啟電腦電源,等待它啟動進入 Windows,然後將 CD-ROM 磁碟裝入光碟機中.安裝程式現在應自動運行.若安裝程式無法自動執行,可以從電腦工作列中選擇開始/執行,進入執行對話方塊.按一下瀏覽 按鈕,並使用瀏覽 對話方塊打開安裝光碟上的 Setup.exe 檔案.按兩下 Setup.exe。現在,在執行 對話方塊中選擇確定,開始軟體的安裝過程.

2.精靈將顯示一系列對話方塊, 自動逐步引導您完成安裝過程.跟隨每個螢幕上的指示, 並按下一步, 進入下一階段.按一下取消 將退出安 裝程式.

執行 XCal-View 軟體

開啟電腦,等待它啟動進入Windows。

從 Windows 工作列中, 按一下「開始」按鈕, 然後從「所有程式/Renishaw XCal-View」功能表中選擇 XCal-View 應用程式。

或者, 選擇分析按鈕並從支援的量測選項(例如線性、斜角、直線度或垂直度)之一選擇資料檔案, 也能從 LaserXL、Laser10 或 RotaryXL 內存取 XCal-View。

啟**用軟體**

啟**用選項**

必須先啟用 XCal-View 才能使用 XCal-View。使用軟體畫面右下方的 🌌 按鈕啟動啟用工具。

共提供兩個選項:

a) 30 天評估

此選項將 Renishaw XCal-View 軟體 30 天的評估期提供給使用者。這個選項沒有限制,軟體的功能性與完整版相同。 注意:一旦啟用 30 天的評估期並且過期後,將無法使用此選項。

b) 啟**用軟體**

只有購買軟體完整版本並擁有可啟用軟體的合法金鑰的使用者才能使用此選項。

一旦啟用軟體後,使用 🗾 按鈕可選擇下列選項

停用軟體

這讓已購買 Renishaw XCal-View 軟體的使用者可停用此軟體, 並在另一台電腦重新啟用此軟體。

註冊軟體

Activation ID		
Contact name		
Contact email address		
Company name		
Country	United Kingdom	
Serial number	XL Laser system	

初次啟用軟體時,會收到有關註冊詳細資訊的詢問。填完詳細資訊並選擇「註冊」以持續啟用軟體。

註冊完畢後,請選擇兩種啟用程序中的其中一種。

Activa	tion	
Activa	ation detai	ls
	×	Automatic Requires working internet connection on this computer
	\boxtimes	Manual Activation processing by manually transferring the files to the renishaw website
L		
_		

自動啟用

如要使用自動模式, 安裝 XCal-View 的電腦必須要連上網路。XCal-View 會自動啟用, 接著重新啟動並就緒使用。這是最簡單的啟用軟體 方式。

手動啟用

手動啟用會產生一個檔案,該檔案必須複製到有連上網路的電腦,並從電腦上傳。接下來,「手動啟用」對話方塊會出現並顯示如下:

遵照畫面上的指示以產生啟用要求。注意:必須在能連上 renishaw.com/licensing/xcalview 的電腦上才能上傳「要求檔案」。這會送回一個回應檔。

一旦收到「回應檔」後

使用記憶卡(或類似裝置)將「回應檔」傳送到有安裝 XCal-View 的電腦。瀏覽「回應檔」並按下綠色箭頭。

XCal-View 軟體入門

首頁畫面

現在會出現 XCal-View 應用程式主視窗。

這是第一次使用 XCal-View 軟體, 因此畫面上也會出現「設定」面板。

命令列

從畫面右下角可看到「命令列」,其中包含下列用途的按鈕:

設定

, 提供可變更分析設定的選項,例如量測單位、誤差單位、語言、將個人化徽標套用至文件等等。

啟用工具

這提供了「30 天評估」、「使用啟用 ID 來啟用軟體」或「停用軟體, 讓使用者能將授權轉換到另一台電腦」的選項。

說**明**

開啟 XCal-View 手冊。

關於 XCal-View

顯示授權合約詳細資訊、評估剩餘天數、安裝的分析套裝與「檢查更新」連結。

設定

初次執行軟體時,您將會收到提示,變更軟體設定以符合您的喜好。

使用設定標籤(反白如下),使用下拉箭頭可變更下列設定:

🦯 Linear a	ind Straightness units				
Error	micrometres (µm)		Precision	1	
Target	millimetres (mm)		Precision	4	
Z Angular	units				
Error	arcseconds (arcsecs)		Precision	•	
Target	degrees (*)		Precision	•	
L Squarer	ness units				
Units	micron/metre (µm/m)	•	Precision	4	
🔶 Environ	ment units				
Temperature	Celsius (*C)		Pressure	millibar (mbar)	
Coefficient	ppm per Degree Celsius (ppm/*C)		Humidity	RH (%RH)	

注意:變更這些項目可能會影響分析正確性。

單位標籤

- 線性與直線度單位
- 角度單位
- 垂直度單位
- 環境單位

應用標籤

- 公司徽標(用於報表)
- 報表語言

進階配置標籤

- 直線度斜率移除 (套用於原始資料檢視與比較檢視)
- 垂直度柱狀誤差
- 檔案編碼語言
- 動態噪音去除

支援的分析模式

- 線性
- 角度
- 平坦度
- 動態
 - 動態量測 - FFT 分析
- 真直度
- 具直度
 垂直度
 - 經由直線度測試
- 線性平行度
- 旋轉平行度
- 對角線分析
 - 體對角線
 - 面對角線
- Ballbar Trace

使用「Renishaw analysis」可檢視 Renishaw 軟體之前支援但 XCal-View 不支援的其他標準,如需使用「Renishaw analysis」可 從 <u>www.renishaw.com/lasercalsupport</u> 下載取得。

載入資料檔案

Renishaw XCal-View 2.3				
Linear	Angular	Flatness	e Dynamic	Straightness
Squareness	Linear parallelism	Rotational parallelism	Diagonals analysis	Ballbar Trace
				🌣 🍠 🕐 🛡

從首頁為想開啟的資料選擇相關分析模式(例如開啟角度「.rta」檔)。

使用瀏覽器選擇想分析的所需資料檔案。資料檔案會開啟,顯示套用任何分析格式化之前的原始資料圖形。

資料檢視與分析

檢視

測試瀏覽器

在軟體左方能找到測試瀏覽器面板,其中包含選取的測試檔案詳細資訊。

量測

顯示選取的結果檔案之「圖形」與「原始資料」表(如上圖)。

資訊

包含已執行完成校正的所有測試參數。

- 測試資訊
- 機器資訊
- 測試方式
- 測試參數
- 儀器設定
- 測試設備
- 軟體資訊

環境

包含在校正期間從環境補償單元收到的資料(如果有連線)。

過濾資料回合

為了讓使用者能檢視擷取的特定回合,因此可「過濾」回合以檢視特定興趣領域。

如要執行,只有以「圖形」模式或「原始資料」模式檢視「RAW」標準時,可選擇圖形右方「測試回合」畫面。

全部選擇 - 顯示所有擷取的資料

只顯示負方向測試執行 - 顯示只在負方向擷取到的回合

只顯示正方向測試執行 - 顯示只在正方向擷取到的回合

倒轉選擇 - 切換選取(已勾選)及未選取(未勾選)的回合

Run1 (+) Run1 (-) Run2 (+) Run2 (-) Run3 (+)

Run1 () 手動選擇 - 使用者能依興趣選擇任何回合。只需按下方塊就能選擇 / 取消選擇回合

分析

開啟標準

一旦開啟軟體內的測試後,就能使用軟體內支援的其中一種分析標準來檢視資料。從左方欄位可找到分析標準,按下相關標籤就能選擇標準。資料會以所對應之相關分析標準以進行分析。

支援的分析標準

ASME 5.54 1992; ASME 5.54 2005; GB 17421.2 2000; ISO 230-2 1997; ISO 230-2 2006; ISO 230-6 2006; ISO 230-2 2014; JIS B 6192 1999; JIS B 6190-2 2008; Renishaw 2012; VDI 3441 1977; VDI 2617 1989; ISO 10791-6 2014。

切換資料檢視

使用資料圖上方的標籤,就能檢視不同格式的資料。格式選項會依據選取的分析標準而異。

explorer	· ·	Guph plat	Station											D 1
Measurements	ASME 5.54 2005	Harris		-		Value (imm)	0)	II I I	rook Start	ted .	Mo	_	Max	
Louis A.	INC.	Accuracy	(A)			0.00530								
Information	1000	Rep(+)				0.00539								
	2000	Rep (i)				0.00570								
		Editoria	nal repeatability			0.00050								
		and and a state of the local division of the			_		_	_					<u> </u>	_
	1997													
	22	Forward	deviations (m	(Ilimetres)										
	2004	12000												
		14000	A STATE			1 10121	Contract of		And an average of the	A STATE OF THE OWNER	A 44441	Near Col		
	122		0.0000	-0.00090	-020380	-0-000270	-010100	-0.00090	-030192	0.00073	0.00012	-0.30425		
	1999		200.7000		-0.00000	-0.00000	-110725	0.00130		0.00010	-100053	A 10/000		
			450 1000		0.00100			0.001200			0.00012			
			400.000	-1.000.00	-0.00140	-0.00190	0.00000	0.00000	4.94717		0.00400	4.0005		
	15 9 6190-2	1	750 1000		4.96190		Amilas	-0.00730						
	-		801 5505		4.0045.0	4.00540	-0.00400	-0.00530	0.00414	0.00123	-0.00118	-0.00154		
	222		1050.0300	.0.00130	.0.0000	.0.0000	.0.00210	.0.00730	.0.00128	0.00140	0.00072	-0.0000		
Then earlies address	Familian 2017		1211.9000	-0.00620	-0.00500	-0.00630	-0.00450	-0.00340	4.00566	0.00183	-0.00057	-601115		
reaction benefit and an		10	1151,5000	-0.00140	-0.00500	-0.00540	-0.00100	-0.00230	0.00404	0.00197	0.00106	4000		
Company	12 M	ii.	1500.4100	-0.00780	-0.00580	-0.00560	-0.00475	-0.06270	4.00512	0.00185	0.00072	-0.01087		
and sets.	YDE 3441													
Ever Companyation	507													

圖形選項

選擇

變更 XCal-View 分析內的圖形樣式

🖬 按鈕以開啟圖形配置選單。這會將下列選項提供給使用者:

a) 縮放比例標籤

獨立選擇想要的X與Y軸比例類型。可選擇的縮放比例選項有自動、手動或手動置中等。

b) 顯示標籤

- 顯示圖例 顯示圖形右方的回合 ID。
- 顯示網格 顯示與比例成比例的圖形上的「背景網格」。
- 黑白 將所有圖形回合切換為黑白
- 線條粗細 調整圖形線條粗細
- 標記樣式 選擇用於 Raw、Renishaw 圖的標記樣式

分析功能反白

在分析結果表內選擇「分析功能」以清晰地反白圖形上的數值。

資料裁切

儘管是以 ISO 10791-6 分析進行循圓測試儀資料的分析, 但可使用藍色與紅色垂直線裁切用於報表的資料範圍。在雙向測試中, 每次執行 測試可用一對裁切線。

圖形互動

分析 XCal-View 內的測試時, 下列選項可用於自訂圖形檢視:

滑鼠指標「縮放」

將滑鼠指標放入「圖形」並捲動滾輪。 按住「控制」鍵,按下+或-按鈕進行放大或縮小。

「縮放」軸的比例

將將滑鼠指標放在需要的軸上,按下滑鼠左鍵並捲動滑鼠滾輪。

「縮放」到手動選擇的區域

按住滑鼠滾輪並拖曳以選擇縮放區域。 按住「控制」鍵,在圖型區域內按下滑鼠右鍵並拖曳以選擇縮放區域。

上下「平移」軸的比例

將滑鼠指標放在需要的軸上,並按住滑鼠右鍵並拖曳軸。 將滑鼠指標放在任一軸上,按下滑鼠左鍵,按住「控制」鈕並使用箭頭鍵。

「平移」圖形

將滑鼠指標置入「圖形」,按住滑鼠右鍵並「拖曳」。 將滑鼠指標放在「圖形」上並「按左鍵」。接著,按住「控制」鈕與箭頭鍵。

「檢視」點坐標與數列詳細資訊

將滑鼠指標放在「圖形」上的擷取點並按住滑鼠左鍵以檢視資訊。

「恢復」到預設設定

將滑鼠指標放入「圖形」區域並按兩下滑鼠滾輪。 將滑鼠指標放入「圖形」區域,按下控制鈕並按兩下滑鼠右鍵。 將滑鼠指標放入「圖形」區域並按下「控制-A」。

圖形互動(平板限定)

「縮放」

使用畫面上的「展開」與「夾擠」手勢可進行縮小與放大。

「平移」圖形

使用畫面上的拖曳手勢可進行此動作。

建立客戶報表

可由2種方式建立報表:

- 將相關資料複製及貼到另一個應用程式以進行編輯。
- 在 XCal-View 軟體應用程式內建立格式化的 PDF。

注意:必須將 Adobe® Reader 安裝在電腦上以檢視 PDF 報告。

複製及貼上:

凡是有出現複製符號 🖸 的頁面, 都能複製軟體內的資料。

圖形檢視

原始資料檢視

at exterioren		ingly plat	Ten 184														
Measurements	KAW	_	-									Testa		2			
Lines X	92	Row data	Omicrometres	d								1000					
Distamution	Renishaw 3012	1 des	Targets (mm)	Run1(+)	Re101	Run2(+) Run -1.6	2(1 Run 3)+ 11 -23	Run3(c) 32	Rank(-) R	2.3 Fund	(-) Run3(-) 0.8 1.5		ard (+)				
	105		150,7100				4.6 8.4										
	AMESH		300,8500				-10 -43				28 - 48		m2(+)				
	2992		458,3300										ani (-)				
	194		681,1306				-14 -11				6.9 -7.8		and (+)				
	ASMESSE		758.3100		-59		-10 -43	-4.0			21 - 2 1		and to b				
	305		101.5500	- 41	-54	-94	-10 -54	-41	-40	-	au -au						
	巡		1201.9000	-42	- 41	30	-10 -41	-48	45	-11	34 -33		arð (+)				
	66 17421.2		1351.5000				-1.0 -5.1				22 -14		arð (-)				
			1506.4100				-18										
	22	<u> </u>					_	_				-					
	3947																
	146																
	124 BC 230-2						6	0			6						
	126 150 236-2 2998			F	A	a Tarrata	c	D	E.	F	G	н	1		к	L	
lero point alfaet	120 110 236-2 2008				A	B Targets	c	D	E	F	G	н	1	,	K	L	
ero point affuet	126 150 236-2 3908 15 0 4193 15 0 4193			1	A Index	B Targets (mm)	C Run 1 (+)	D Run 1 (-)	E Run 2 (+)	F Run 2 (-)	G Run 3 (+)	H Run 3 (-)	l Run 4 (+)	J Run 4 (-)	K Run 5 (+)	L Run 5 (-)	
ero point althet	22 DC 226-2 2998 25 D 4192 2999			1	A Index	B Targets (mm) 1 (C Run 1 (+) -2.6	D Run 1 (-) 2.3	E Run 2 (+) -1.6	F Run 2 (-) 1.1	G Run 3 (+) -2.7	H Run 3 (-) 3.2	I Run 4 (+) -1.8	J Run 4 (-) 2.3	K Run 5 (+) -0.9	L Run 5 (-) 1.5	
lero point attact Corropere Gran Compensation	22 102 236-2 2998 25 4 1392 1999 1999			1 2 3	A Index	B Targets (mm) 1 (2 150.71	C Run 1 (+) -2.6 0.2	D Run 1 (-) 2.3 5.4	E Run 2 (+) -1.6 0.7	F Run 2 (-) 1.1 4.6	G Run 3 (+) -2.7 0.4	H Run 3 (-) 3.2 5.7	I Run 4 (+) -1.8 1.8	J Run 4 (-) 2.3 5.4	K Run 5 (+) -0.9 1.5	L Run 5 (-) 1.5 5.9	
len point affect Company Lower Companyation	22 152,235,2 2998 15,041,92 1998 14 14 14 14 14 14 14 14 14 14 14 14 14		_	1 2 3 4	A Index	B Targets (mm) 1 (2 150.71 3 300.85	C Run 1 (+) -2.6 0.2 -5	D Run 1 (-) 2.3 5.4 -1.5	E Run 2 (+) -1.6 0.7 -3.6	F Run 2 (-) 1.1 4.6 -1	G Run 3 (+) -2.7 0.4 -4.8	H Run 3 (-) 3.2 5.7 -0.8	I Run 4 (+) -1.8 1.8 -2.7	J Run 4 (-) 2.3 5.4 -2.6	K Run 5 (+) -0.9 1.5 -2.8	L Run 5 (-) 1.5 5.9 -0.8	
Interpoint affect Company Inter Companyation	22 102 230 2 2998 15 P 4152 2998			1 2 3 4 5	A	8 Targets (mm) 1 (2 150.71 3 300.85 4 450.33	C Run 1 (+) -2.6 0.2 -5 0.6	D Run 1 (-) 2.3 5.4 -1.5 2.4	E Run 2 (+) -1.6 0.7 -3.6 1.6	F Run 2 (-) 1.1 4.6 -1 2.1	G Run 3 (+) -2.7 0.4 -4.8 0.5	H Run 3 (-) 3.2 5.7 -0.8 3.6	I Run 4 (+) -1.8 -2.7 2.3	J Run 4 (-) 2.3 5.4 -2.6 2.2	K Run 5 (+) -0.9 1.5 -2.8 2.3	L Run 5 (-) 1.5 5.9 -0.8 2.9	
Into point utiliset Company Into Companyation ISHAW/J	225 102215-2 2990 125 1990 10 10 10 10 10 10 10 10 10 10 10 10 10			1 2 3 4 5 6	A	8 Targets (mm) 1 (2 150.71 3 300.85 4 450.33 5 601.11	C Run 1 (+) -2.6 0.2 -5 0.6 -8.4	D Run 1 (-) 2.3 5.4 -1.5 2.4 -9	E Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4	F Run 2 (-) 1.1 4.6 -1 2.1 -9.4	G Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8	H Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1	I Run 4 (+) -1.8 1.8 -2.7 2.3 -6.1	J Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3	K Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9	L Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8	
un point attuit Innean Inne Companying ISHAWAI Inneation	122 102 220-2 2000 22 10200 10200 10200 10200 10200			1 2 3 4 5 6 7	A	B Targets (mm) 1 (2 150.7) 3 300.85 4 450.33 5 601.11 6 750.31	C Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -4.9	D Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9	E Run 2 (+) -1.6 0.7 -3.6 1.6 -7,4 -3.7	F Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9	G Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7	H Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4	I Run 4 (+) -1.8 1.8 -2.7 2.3 -6.1 -3.4	J Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3	K Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3	L Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9	
See point allust Company Inser Companyation Insertation	22 152 226 2 2998 25 B 4132 5999			12345678	A	8 Targets (mm) 1 (2 150.71 3 300.82 4 450.31 5 601.11 6 750.33 7 901.55	C Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -4.9 -6.3	D Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9 -5.8	E Run 2 (+) -1.6 0.7 -3.6 1.6 -7,4 -3.7 -5.1	F Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9 -5.6	G Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7 -5.6	H Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4 -4,7	I Run 4 (+) -1.8 1.8 -2.7 2.3 -6.1 -3.4 -4.1	J Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3 -4.2	K Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2	L Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -2.9 -3.3	
ten point affant Cempans Inter Compensation ISHAW (2) Novelden -	22 152 26 2 2998 25 6 4192 2009			123456789	A	8 Targets (mm) 1 (2 150.71 3 300.85 4 450.32 5 601.11 6 750.31 7 901.55 8 1050.02	C Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -4.9 -6.3 -5.5	D Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9 -5.8 -5.6	E Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7 -3.7 -3.7	F Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.6 -5.6 -4.8	G Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7 -4.7 -5.6 -5.6	H Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4 -4 -4.7 -4.4	I Run 4 (+) -1.8 -2.7 2.3 -6.1 -3.4 -4.1 -2.3	J Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3 -4.2 -4.4	K Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2 -3.2 -3.2 -2.3	L Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -3.3 -2.9	
Inn point affluit Company Inner Companyation ISHAW/di Novation	22 BC 236 2 3998 22 BC 236 2 3998 22 BC 236 2 3998 20 20 C 20 C 20 C 20 C 20 C 20 C 20 C 2			1 2 3 4 5 6 7 8 9 10	A	8 Targets (mm) 1 (0 2 150.71 3 300.85 4 450.31 5 601.11 6 750.31 7 901.55 8 1050.05 9 1201.0	C Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -4.9 -6.3 -5.5 -8.2	D Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9 -5.8 -5.6 -5.6	E Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7 -5.1 -3.6 -5.9	F Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9 -5.6 -4.8 -5.6	G Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -7.8 -4.7 -5.6 -5 -5	H Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4 -4.7 -4.4 -4.7	I Run 4 (+) -1.8 -2.7 2.3 -6.1 -3.4 -4.1 -2.3 -4.5	J Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3 -4.3 -4.2 -4.4 -21	K Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2 -2.3 -3.2	L Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -3.3 -2 2	
See point athet Compan Inver Compensation ISSEANCE	22 10.2 730.2 7998 20 80 8 4132 5998			1 2 3 4 5 6 7 8 9 10	A	8 Targets (mm) 1 (2 150.77 3 300.82 4 450.33 5 601.11 6 750.31 7 901.55 8 1050.02 9 1201.5 9 1201.5	C Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -4.9 -6.3 -5.5 -8.2	D Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9 -5.8 -5.6 -5.6	E Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7 -5.1 -3.6 -5.9	F Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9 -5.6 -4.8 -5	G Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7 -5.6 -5 -6.3	H Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4 -4.7 -4.4 -4.7 -4.4	I Run 4 (+) -1.8 -2.7 2.3 -6.1 -3.4 -4.1 -2.3 -4.5	J Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3 -4.2 -4.4 -3.1	K Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2 -2.3 -3.4	L Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -3.3 -2 -2 -2	
Compose Compose Inter Componention ISHAWC40 Interestion ~	<u>20</u> 162 236 2 7998 2010 2010 2010 2010 2010 2010 2010 201			1 2 3 4 5 6 7 8 9 10 11	A Index	B Targets (mm) 1 (2 150.71 3 300.82 4 450.31 5 601.11 6 750.31 7 901.55 8 1050.02 9 1201.5 9 1201.5	C Run 1 (+) -2.6 0.2 -5 0.6 -8.4 -4.9 -6.3 -5.5 -8.2 -7.4 -7.4	D Run 1 (-) 2.3 5.4 -1.5 2.4 -9 -5.9 -5.8 -5.6 -6.1 -5.6	E Run 2 (+) -1.6 0.7 -3.6 1.6 -7.4 -3.7 -5.1 -3.6 -5.9 -5.5	F Run 2 (-) 1.1 4.6 -1 2.1 -9.4 -5.9 -5.6 -4.8 -5 -4.6	G Run 3 (+) -2.7 0.4 -4.8 0.5 -7.8 -4.7 -5.6 -5 -6.3 -5.4	H Run 3 (-) 3.2 5.7 -0.8 3.6 -8.1 -4 -4, -4, -4, -4, -4, -4, -4, -4, -4,	I Run 4 (+) -1.8 -2.7 2.3 -6.1 -3.4 -4.1 -2.3 -4.5 -3.7	J Run 4 (-) 2.3 5.4 -2.6 2.2 -8.3 -4.3 -4.3 -4.2 -4.4 -3.1 -2.8	K Run 5 (+) -0.9 1.5 -2.8 2.3 -6.9 -2.3 -3.2 -2.3 -3.4 -2.2	L Run 5 (-) 1.5 5.9 -0.8 2.9 -7.8 -2.9 -3.3 -2 -2 -2 -2 -1.4	

在「檢視」及「分析」都能使用「複製及貼上」。

建立 PDF:

按下 Adobe® 符號 🎦 按鈕可從任一分析畫面產出 PDF 報表。這能提供您選擇更多 Adobe 選項,例如儲存與列印。或者,按下 📑 按鈕即可直接列印。

新增個人公司徽標

可為在 XCal-View 內產生的報表新增個人化公司徽標。

新增徽標

選擇畫面右下方「命令列」的「設定」圖示。

接著,「XCal-View 設定」對話方塊會開啟。選擇此對話方塊內的「應用程式」標籤並瀏覽個人圖示,

注意:圖示的尺寸必須為 200 x 50 像素。軟體會放大或縮小選擇的圖示, 以符合需要。

V Settings
Units Application Advanced configuration
A Report
Logo RENISHAW apply innovation Note Image must be 200 x 50 pixels.
Language English

您的個人化公司徽標現在會出現在「PDF」與「已列印的」測試報表右上方。

Renishar example.rti 1 Operator: R.1	w Analysis- 2012:Line Typical test results T.S.	ar X			RENISHAW apply innevation"
3	Machine name Axis under test Serial number	Linear Example X 15345/Lin	Number of runs Targets Test date	5 Alternate bidir 11 Linear 1989-05-16T08:09:00	
	Test equipment	Serial no	mber	Calibration date	
	0.015	Å	Zero line		
	1				

檔案比較檢視

比較資料檔案

可以在 XCal-View 軟體內比較資料檔案。無論是比較誤差補償前後的資料, 或檢視線性位置的角度誤差影響, 這對此兩種應用都很有幫助。

比較檔案:

使用展開 💿 圖示展開軟體畫面左方的「測試瀏覽器」面板。

選擇「比較」按鈕。

在畫面左方, 選擇「新增」 按鈕並瀏覽需要的資料檔案, 就能新增測試。

一旦選擇後,兩組資料都會顯示在圖形上。

注意:如有需要,圖上會出現另一新軸線。

從比較檢視移除單一「資料通道」

如要移除單一「資料通道」,應按下「測試瀏覽器」面板內的適當資料檔案,因此該檔案會反白為橘色,如下圖

選擇「移除」圖示 📒

從比較檢視移除所有「資料通道」

如要移除所有資料通道, 只需按下左方面板的「重設」圖示 . 會要求您確認是否的確想移除所有資料檔案。如要確認, 請選擇 OK 注意: 這只會從比較畫面移除檔案, 而不會從電腦移除原始檔。

零點偏移

零點偏移功能可讓使用者偏移資料,使所顯示的零點及有效零點「0」位置異於資料擷取時的位置。這項功能對旋轉軸的誤差補償很有用。

套用零點偏移

開啟資料檔案。

從「測試瀏覽器」面板的下方選擇「零點偏移」按鈕。

「零點偏移」對話方塊會顯示:

選擇下列選項可配置「零點偏移」以符合使用者的需求:

選擇回合

- 平均回合
- 從擷取的結果選擇特定回合

坐標位置

• 設定坐標位置

下列為原始檔案範例, 顯示讀出~0 μm(在校正期間擷取)誤差的 0 mm 點。

接下來,「零點偏移」檔顯示同樣的檔案,回合1的600mm點「偏移」到0µm量測誤差。

將設定恢復到原始設定

取消核取「套用零點偏移」以恢復到原始設定

誤差補償

使用展開 🕑 圖示展開軟體畫面左方的「測試瀏覽器」面板。

展開時,會出現「誤差補償」按鈕。

選擇「誤差補償」按鈕。

接著,「誤差補償」對話方塊會出現。

誤差補償

1) 補償類型

支援的補償類型有2種:

- 標準 包含反向間隙值的補償值表。
- 雙向 正向與反向個別的值。

2) 計算類型

支援的計算類型有2種:

- 增量式 計算關於之前補償點所得的值。
- 絕對式 以絕對值計算的補償點
- 3) 誤差解析度

產生的補償值解析度

4) 符號約定

將輸出值配置為「如誤差」或「如補償」

5) 類型

定義產生的輸出檔案樣式

6) 參考位置

套用原點補償的坐標位置

7) 補償開始

軸上套用補償的啟始位置

8) 補償結束

軸上套用補償的結束位置

9) 補償間隔

補償點之間的間隔

此時, 左方面板上的補償設定必須設定為符合使用者需求。

儲存配置設定

如果日後必須使用配置設定,可使用「儲存」圖示進行儲存。

載入配置設定

如果機器內有已儲存的配置設定,就能選擇「載入配置」圖示並選擇「已瀏覽」配置。

LEC.REN 及 LEC2.REN 選項

產生誤差補償檔案時,可選擇 LEC.REN 及 LEC 2.REN 格式。

兩種檔案差異是在於顯示的補償資料格式。

選擇最符合機器控制器要求的格式。

下列為2種誤差補償檔案的範例:

LEC.REN

			LEC2.REI
File example			
		File example.rtl	
Table type Com	bined table with backlash value		
Compensation type	Incremental	Table type Combined table with backlash value	
Compensation resolution	0.001 µm	Compensation type Incremental	
Sign convention A:	compensation	Compensation resolution 0.001 µm	
Reference position 0	mm	Sign convention As compensation	
Compensation start	0 m m	Reference position 0 mm	
Compensation end	-200 m m	Compensation start 0 mm	
Compensation spacing	10 mm	Compensation end -200 mm	
		Compensation spacing 10 mm	
Backlash value 1.5	85 µm	Backlash value 1.585 µm	
		Axis position(mm)	
C	impensation values	-200	
		-190	
No Axis position	Combined	-180	
(mm)	(0.001 µm)	-170	
-200	204	-160	
2 -190	204	-150	
3 -180	205	-140	
4 -170	204	-130	
-160	205	-120	
-150	204	-110	
7 -140	204	-100	
8 -130	205	-90	
-120	204	-80	
-110	204	-70	
-100	205	-60	
12 -90	204	-50	
-80	204	-40	
-70	205	-30	
-60	204	-20	
-50	205	-10	
17 -40	204	0	
18 -30	204		
-20	205	Compensation values(0.001 µm)	
20 -10	204	204	
21 0	0	204	
		200	
		209	
		200	
		204	
		205	

檢視 XCal-View 內的誤差補償檔案

一旦設定了配置設定,就選擇「產生」圖示。

可選擇「補償表」格式或「圖像補償」格式檢視誤差補償資料,如下圖:

在圖像補償檢視中,顯示的圖會顯現最初擷取的資料結果以及「補償後預測的機器性能」。

儲存誤差補償檔案

產生誤差補償後,選擇匯出選項以儲存補償檔案。

nliguration			sation table Gro	phical companiation	
		Backla	ch error 1 595		
Compensation type	Standard				
		Increm	iental Error comp	ensation table (µm)	
alculation type	Incremental	- Dete		Combined (Scale 0001)	
ompensation resolution	0.001		-200.0000	204	
			-190.0000		
ign convention	As compensel		-180.0000		
lupe	LECREN				
			-160.0000		
			-150.0000		
deference position	0.0000		-140.0000		
compensation start	0.0000	len i 💷	-130.0000		
			-120.0000		
Compensation end	-200	21	-110.0000		
		1	-100.0000		
compensation spacing	10	11	-90.0000		
			-80.0000		
			-70.0000		
			-60.0000		
			-50.0000		
			-40.0000		
			-30.0000		
Generate	Save	1	-20.0000		
	L				

軟體會讓您選擇儲存補償表的位置。

Ballbar 分析

Ballbar 資料以 X 軸「點」比例報告。一秒以 100 點表示。

21A

檢查**更新**

XCal-View 現在包含自動檢查軟體*是否為已更新的版本的功能。

上圖顯示更新視窗的範例。此視窗將有提供的軟體更新版本號碼告知使用者,也讓使用者得知到此次升級將提供的顯著的優勢與新功能。

每次在有上網的電腦或筆記型電腦上開啟 XCal-View 時, 自動更新功能性會在背後執行檢查, 以確保取得最新版本。如果使用者已安裝 最新版本, 將不會收到任何通知, 軟體會正常載入。如果有可用的更新, 使用者會見到更新視窗(如上圖)。

在視窗底部有個「提醒我」功能。這讓使用者能在更方便更新的時間收到提醒。

按下軟體右下角的「關於」

按鈕就能隨時再次評估更新視窗的時間(若提供)。若有更新,「關於」按鈕將會包含箭頭

*必須要連上網際網路

關於 Renishaw

Renishaw 在產品的開發與製造上堅持著多年以來積極創新的歷史傳統,已確立其在世界上工程技術領域不可撼動的領導地位。自1973年創 立至今,公司不斷地提供尖端科技之產品,除了可以提高加工製程產能與改善產品品質外,並提供高經濟效益的自動化解決方案。 遍佈全球的子公司及經銷商網路為客戶提供優質便捷的全方位的服務與支援。

產品包括:

- 堆疊快速成型製造、真空鑄造、及微型射出成型之技術可用於設計開發、原型測試及生產等之應用
- 尖端材料技術具有種類多樣之應用可用在多種領域中
- 假牙 CAD/CAM 掃描與製造系統及結構材料之供應
- 光學尺 高精度線性、角度及旋轉定位回饋系統
- 夾治具系統 應用於CMM(三次元量測機)及多工檢具系統
- 多工檢具系統 應用於加工零件之比對量測
- 高速雷射量測與探測系統應用於險峻的地理環境
- 光學尺 高精度線性、角度及旋轉定位回饋系統
- 醫療儀器 腦神經外科手術應用
- 工具機測頭系統與軟體 CNC 工具機工件座標設定、刀具檢測及工件量測之應用
- 拉曼光譜儀系統 非破壞性材料分析應用
- 特殊感測系統及軟體應用於CMM的量測需求
- 測針 CMM 與工具機測頭系統之應用

ヲpサン查詢全球聯絡方式・請造訪我們的網站:www.renishaw.com.tw/contact

RENISHAW竭力確保在發佈日期時,此份文件內容之準確性及可靠性,但對文件內容之準確性及可靠性將不做任何擔保。RENISHAW概不會就此文件內容之任何不 正確或遺漏所引致之任何損失或損害承擔任何法律責任。

©2016 Renishaw plc. 保留所有權利

Renishaw保留更改產品規格的權利·恕不另行通知·

RENISHAW及RENISHAW公司徽標中的測頭符號是Renishaw公司在英國及其他國家或地區的註冊商標。 apply innovation,Renishaw產品和技術的名稱與命名是Renishaw plc及旗下子公司的商標。 本文件中使用的所有其他品牌名稱和產品名稱為各自所有者的商品名稱、商標或註冊商標。