

TONiC™ Functional Safety incremental encoder system

Renishaw's TONiC Functional Safety (FS) is an open optical encoder system certified to the following international safety standards:

- ISO 13849 Category 3 PLd
- IEC 61508 SIL2
- IEC 61800-5-2 SIL2

TONiC FS offers all the benefits of the established TONiC linear and angle encoder systems giving exceptional metrology performance and ultimate reliability.

TONiC readheads incorporate Renishaw's market-proven third-generation filtering optics; this is further enhanced by dynamic signal processing including Auto Gain Control (AGC) and Auto Offset Control (AOC). The result is low sub-divisional error (SDE) and even lower noise (jitter) giving smoother velocity control for improved scanning performance and increased positional stability.

TONiC FS is also available for use in UHV environments. It has a clean residual gas analysis (RGA), low out-gassing and a bake-out temperature of 120 °C.

- Functional Safety certified
- Ultra-high vacuum compatible variant
- Detachable analogue (Ti) or dual output (DOP) interface
- Compatible with a wide range of linear and rotary scales with customer-selectable *IN-TRAC*™ auto-phase optical reference mark (datum)
- Optimised filtering optics for even lower noise
- Dynamic signal processing provides ultra-low SDE of typically ± 30 nm
- Auto Gain Control ensures consistent signal strength for long-term reliability
- Integral set-up LED for ease of installation
- Maximum speed to 10 m/s (3.24 m/s at 0.1 μ m resolution)

Compatible linear scales

RTLC20-S		RTLC20 (with <i>FASTRACK™</i> carrier)
Self-adhesive mounted stainless steel tape scale		Stainless steel tape scale and self-adhesive mounted carrier
Form (height x width)	0.4 mm x 8 mm including adhesive	RTLC20 scale: 0.2 mm x 8 mm <i>FASTRACK</i> carrier: 0.4 mm x 18 mm including adhesive
Accuracy (includes slope and linearity)	±5 µm/m	±5 µm/m
Linearity (Figures achievable with two-point error correction)	±2.5 µm/m	±2.5 µm/m
Maximum length	10 m ¹ (> 10 m available on request)	RTLC20 lengths up to 10 m (> 10 m available on request) <i>FASTRACK</i> carrier lengths up to 25 m
Coefficient of thermal expansion (at 20 °C)	10.1 ±0.2 µm/m/°C	10.1 ±0.2 µm/m/°C

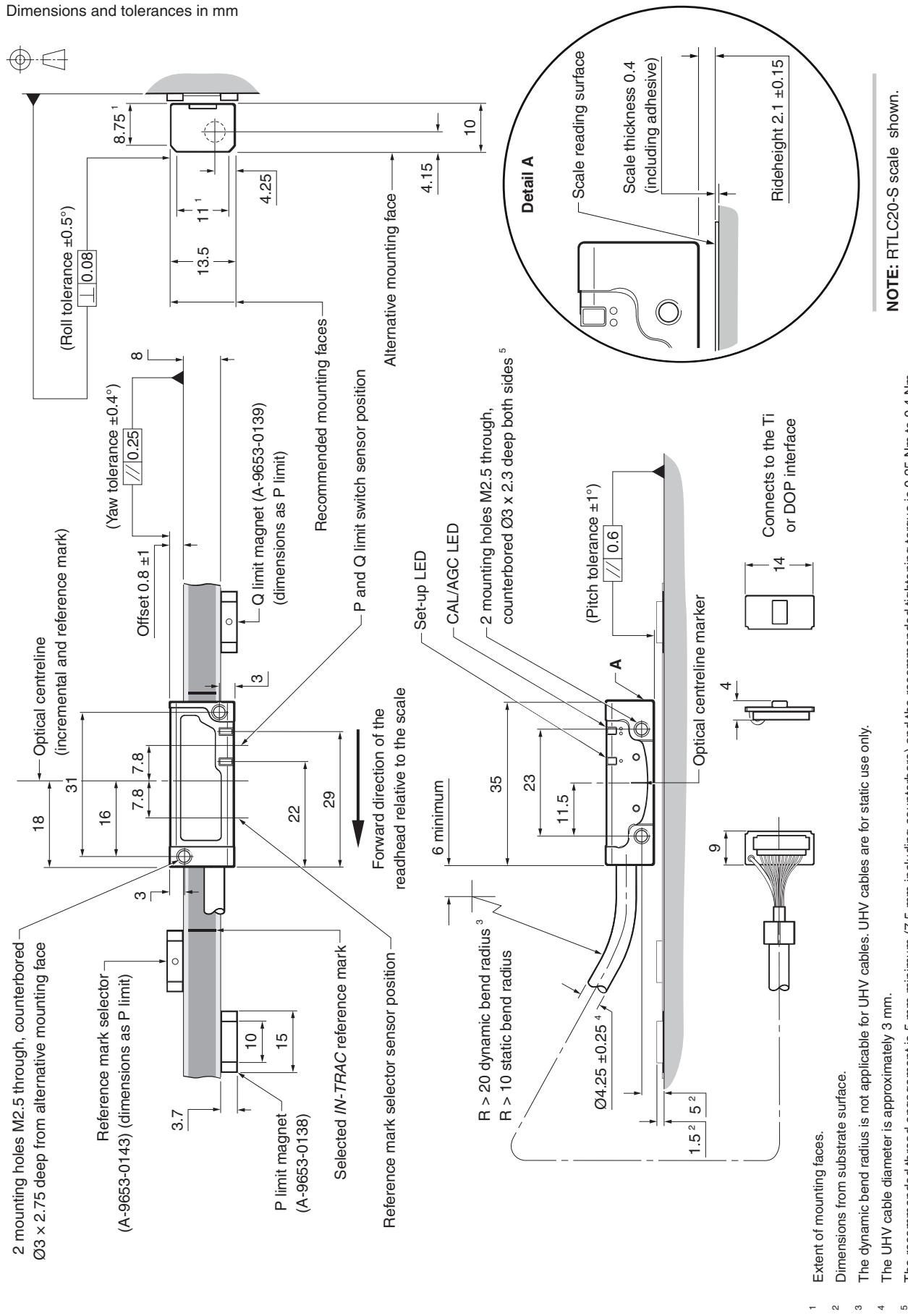
RELx20		RSLx20
Self-adhesive mounted low-expansion ZeroMet™ spar scale ²		Self-adhesive mounted stainless steel spar scale ²
Form (height x width)	1.5 mm x 14.9 mm	1.6 mm x 14.9 mm
Accuracy (at 20 °C)	Up to 1 m : ±1 µm 1 m to 1.5 m : ±1 µm/m	Up to 1 m : ±1.5 µm 1 m to 2 m : ±2.25 µm 2 m to 3 m : ±3 µm 3 m to 5 m : ±4 µm
Maximum length²	1.5 m	5 m
Coefficient of thermal expansion (at 20 °C)	0.75 ±0.35 µm/m/°C	10.1 ±0.2 µm/m/°C

¹ For RTLC20-S axis lengths > 2 m, the *FASTRACK* carrier with RTLC20 is recommended.

² Clip and clamp mounting is not Functional Safety approved. RELx20 and RSLx20 spar scales **must** be mounted with self-adhesive backing tape to be Functional Safety approved. 5 m rolls of double-sided adhesive tape (A-9584-2111) are sold separately.

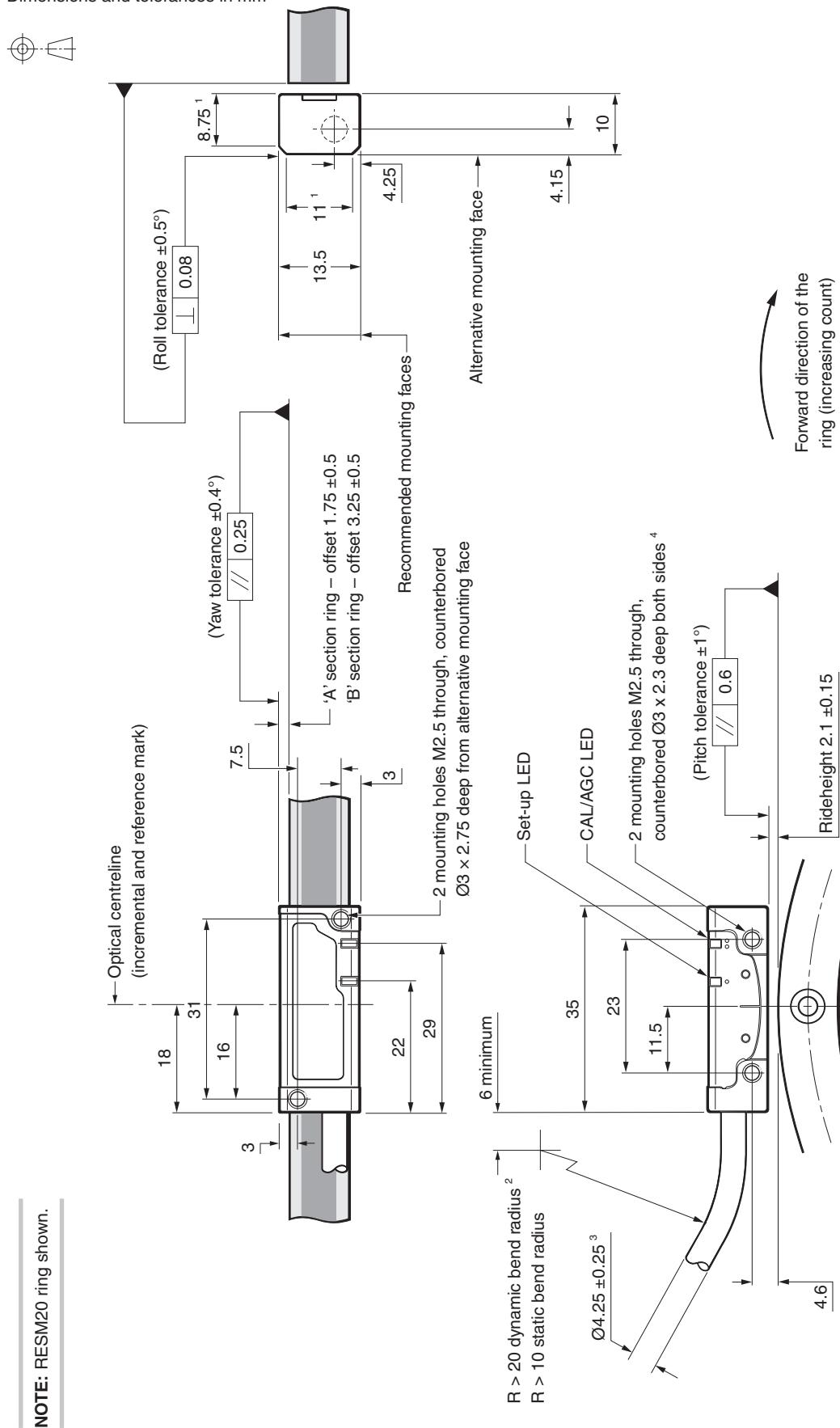
For more information about the linear scales refer to the relevant incremental scale data sheet which can be downloaded from www.renishaw.com/tonicdownloads.

Compatible rotary scale


RESM20	
303/304 stainless steel ring	
Accuracy (at 20 °C)	±1.9 arc second (Typical installed accuracy for a 550 mm diameter ring) ¹
Ring diameters	52 mm to 550 mm
Coefficient of thermal expansion (at 20 °C)	15.5 ±0.5 µm/m/°C

¹ 'Typical' installations are a result of graduation and installation errors combining and, to some magnitude, cancelling.

For more information about the RESM20 ring, refer to *RESM rotary scale* data sheet (Renishaw part no. L-9517-9154) which can be downloaded from www.renishaw.com/tonicdownloads.

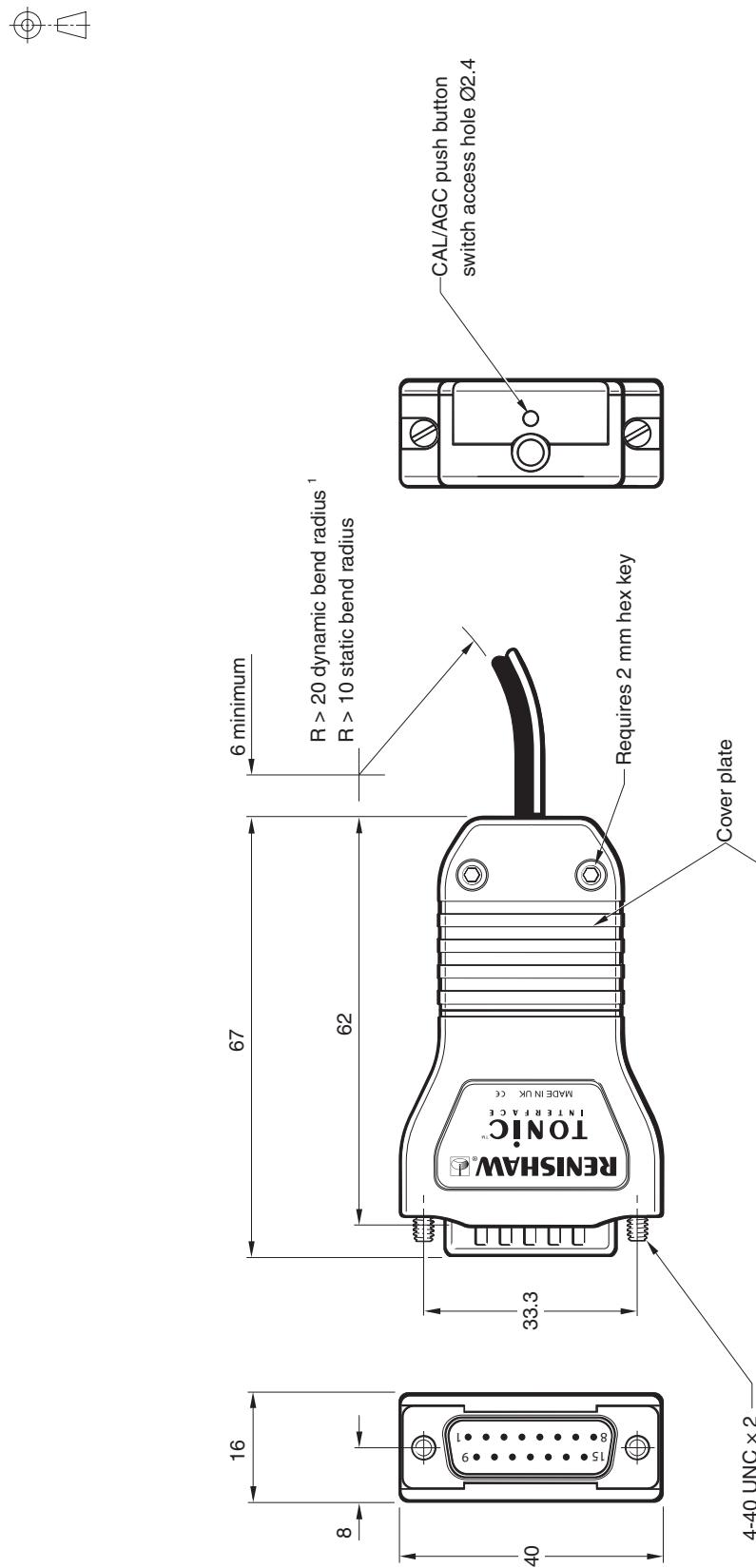

TONiC FS T3xxx readhead installation drawing

Dimensions and tolerances in mm

TONiC FS T4xxx readhead installation drawing

Dimensions and tolerances in mm

¹ Extent of mounting faces.

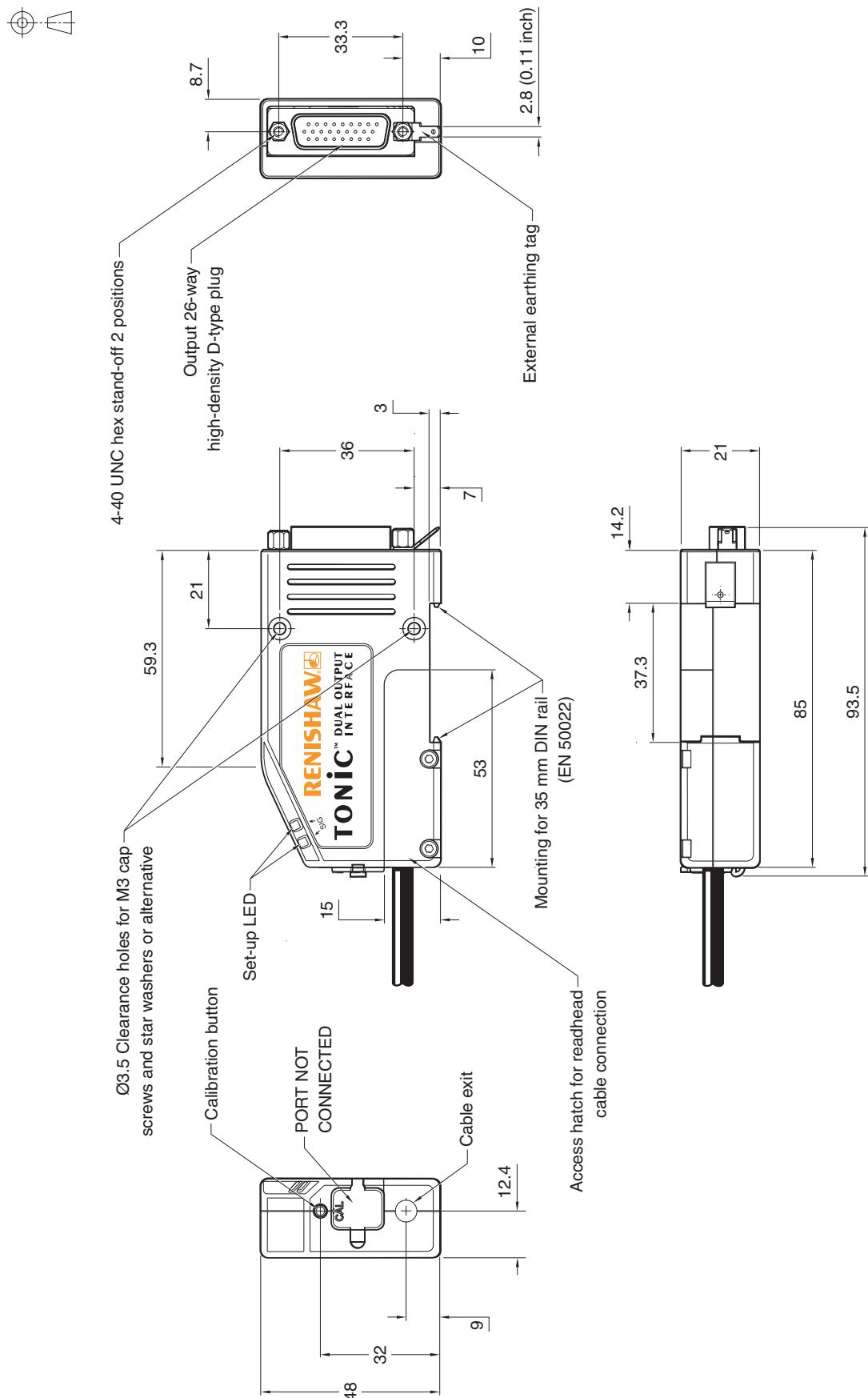

² The dynamic bend radius is not applicable for UHV cables. UHV cables are for static use only.

³ The UHV cable diameter is approximately 3 mm.

⁴ The recommended thread engagement is 5 mm minimum (7.5 mm including counterbore) and the recommended tightening torque is 0.25 Nm to 0.4 Nm.

Ti interface installation drawing

Dimensions and tolerances in mm



NOTE: The Ti interface is not suitable for mounting in a UHV environment.

¹ The dynamic bend radius is not applicable for UHV cables. UHV cables are for static use only.

DOP interface installation drawing

Dimensions and tolerances in mm

NOTE: The DOP interface is not suitable for mounting in a UHV environment.

General specifications

Power supply	5 V \pm 10%	Readhead only: < 100 mA T3xxx/T4xxx with Ti0000 < 100 mA T3xxx/T4xxx with DOP < 275 mA Current consumption figures refer to unterminated systems. For digital outputs, a further 25 mA per channel pair (eg A+, A-) will be drawn when terminated with 120 R. For analogue outputs, a further 20 mA in total will be drawn when terminated with 120 R. Power from a 5 Vdc supply complying with the requirements for PELV of standard IEC 60950.
	Ripple	200 mVpp maximum @ frequency up to 500 kHz maximum
Temperature	Storage	-20 °C to 70 °C
	Operating	0 °C to +70 °C
	Bakeout (UHV readhead)	+120 °C
Humidity	System	95% relative humidity (non-condensing) to IEC 60068-2-78
Sealing	Standard readhead	IP40
	UHV readhead	IP20
	Ti interface	IP20
	DOP interface	IP30
Acceleration	Operating (readhead)	500 m/s ² , 3 axes
Shock	Operating (system)	500 m/s ² , 11 ms, ½ sine, 3 axes
Vibration	Operating (system)	Sinusoidal 100 m/s ² , 55 Hz to 2000 Hz, 3 axes
Shock	Non-operating	1000 m/s ² , 6 ms, ½ sine, 3 axes
Mass	Readhead	10 g
	Ti interface	100 g
	DOP interface	205 g
	Standard cable	26 g/m
	UHV cable	14 g/m
EMC compliance		IEC 61800-5-2 Annex E
Readhead cable	Standard	Double-shielded, outside diameter 4.25 \pm 0.25 mm Flex life > 20 \times 10 ⁶ cycles at 20 mm bend radius UL recognised component
	UHV	Tin coated braided single screen, FEP core insulation
Maximum cable length	Readhead to interface	10 m
	Interface to controller	25 m (with 40 MHz to 50 MHz clocked output interface) 50 m (with < 40 MHz clocked output interface) 50 m (with analogue interface)
Typical sub-divisional error (SDE)		\pm 30 nm
Functional Safety certification ¹		ISO 13849 Category 3 PLd IEC 61508 SIL2 IEC 61800-5-2 SIL2

¹ The system must be installed and operated in accordance with the instructions defined in the relevant TONiC FS installation guide. Failure to follow the correct use instructions and failure to heed the limitations may result in SIL2 and/or PLd not being achieved and will invalidate the Functional Safety certification.

The TONiC FS installation guides can be downloaded from our website at www.renishaw.com/fsencoders.

Safety sub-functions

The TONiC Functional Safety (FS) encoder system provides safe position data that supports the following safety sub-functions defined by IEC 61800-5-2:2016:

- Safe stop 1 (SS1) and Safe stop 2 (SS2)
- Safe operating stop (SOS)
- Safe limited acceleration (SLA) $\leq 500 \text{ m/s}^2$
- Safe acceleration range (SAR) $\leq 500 \text{ m/s}^2$
- Safe limited speed (SLS) $\leq 10 \text{ m/s}$
- Safe speed range (SSR) $\leq 10 \text{ m/s}$
- Safely limited position (SLP)
- Safely limited increment (SLI)
- Safe direction (SDI)
- Safe speed monitor (SSM) $\leq 10 \text{ m/s}$

The system must be installed and operated in accordance with the instructions defined by the installation guide. Failure to follow the correct use instructions and failure to heed the limitations may result in PLd and / or SIL2 not being achieved and will invalidate the functional safety certification.

Functional Safety data declaration

Product identification	TONiC™ Functional Safety (FS) encoder system	
------------------------	--	--

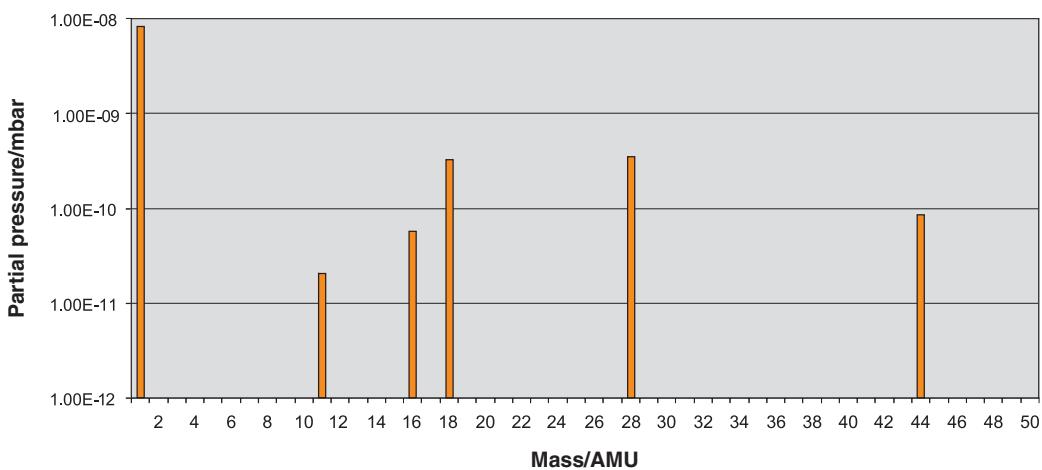
IEC 61508 safety data

	TONiC FS readhead	TONiC FS readhead and Ti interface	TONiC FS readhead and DOP interface
Safety Integrity Level		2	
Random Hardware Failures (per hour)	$\lambda_s = 1.77 \times 10^{-7}$ $\lambda_d = 8.41 \times 10^{-8}$ $\lambda_{dd} = 7.57 \times 10^{-8}$ $\lambda_{du} = 8.41 \times 10^{-9}$	$\lambda_s = 1.77 \times 10^{-7}$ $\lambda_d = 1.38 \times 10^{-7}$ $\lambda_{dd} = 1.25 \times 10^{-7}$ $\lambda_{du} = 1.38 \times 10^{-8}$	$\lambda_s = 1.77 \times 10^{-7}$ $\lambda_d = 4.14 \times 10^{-7}$ $\lambda_{dd} = 3.73 \times 10^{-7}$ $\lambda_{du} = 4.14 \times 10^{-7}$
PFD_{avg}	Not available as this system does not support low demand mode		
PFH (per hour)	$\lambda_{du} = 8.41 \times 10^{-9}$	$\lambda_{du} = 1.38 \times 10^{-8}$	$\lambda_{du} = 4.14 \times 10^{-7}$
Architectural Constraints	Type B HFT = 0 SFF = 96%		
Hardware safety integrity compliance	Route 1H		
Systematic safety integrity compliance	Route 1S		
Systematic capability	SC2		
Demand mode	Continuous		

ISO 13849 safety data

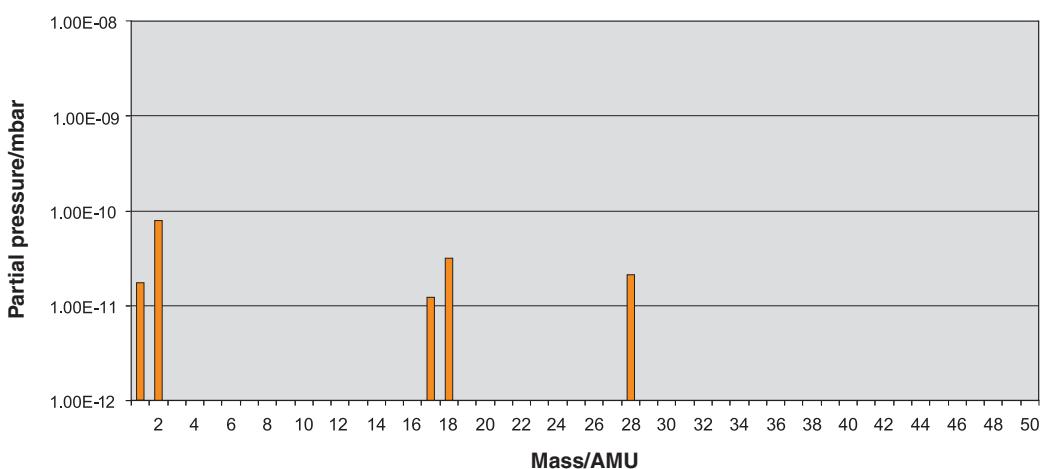
	TONiC FS readhead	TONiC FS readhead and Ti interface	TONiC FS readhead and DOP interface
MTTF_D (years)	1300	800	270
Diagnostic coverage	Medium (90%)		
Category	3		
Performance level	d		
Lifetime/Replacement limits	20 years		

RGA results

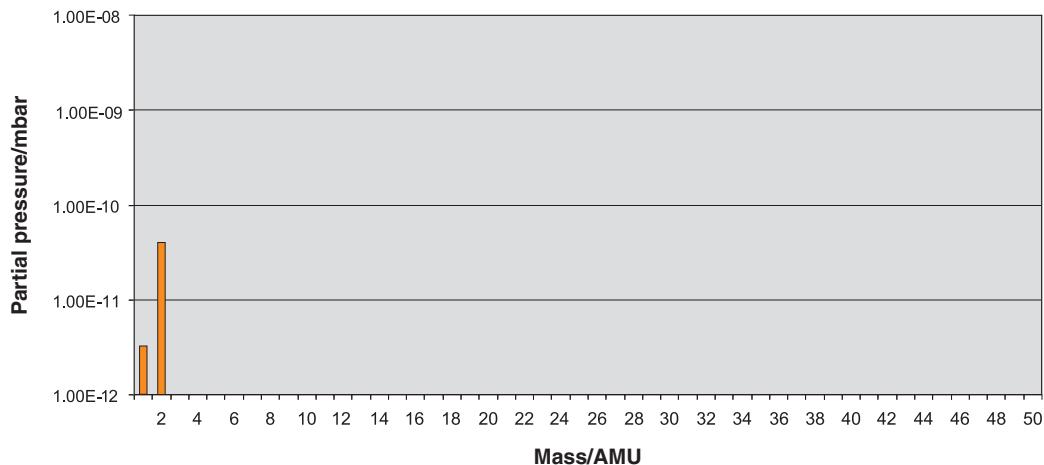

Test schedule

A quadrupole mass spectrometer (AccuQuad 200 RGA), set to 200AMU scan range, was used to collect RGA (residual gas analysis) data and to measure total chamber pressure. After initial conditioning of the system, a background spectrum was recorded together with the total pressure in the test chamber.

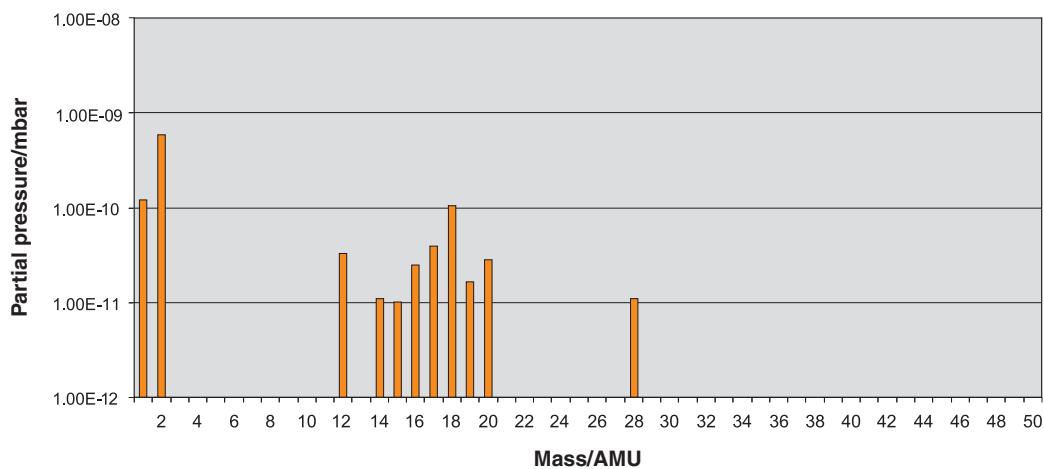
The component was placed in the vacuum chamber (0.015 m³) and the system was then pumped using an KJL Lion 802 (800/s) diode ion pump and a Divac diaphragm pump at ambient temperature for 24 hours, after which a background scan and the total pressure in the test chamber were recorded again. If the system pressure was better than 5×10^{-9} mbar, the test specimen was baked at 120 °C for 48 hours. The system was then allowed to cool to ambient temperature before a final mass spectrum and the total pressure in the test chamber were recorded. These final RGA scans are shown below.


TONiC readhead with 1.0 m cable after bake-out

(total pressure = 9.0×10^{-10} mbar)



RTLC20-S self-adhesive stainless steel linear tape scale after bake-out


(total pressure = 2.8×10^{-10} mbar)

RELx self-adhesive mounted linear spar scale after bake-out
(total pressure = 3.0×10^{-10} mbar)

RESM20 ring ($\varnothing 115$ mm) after bake-out
(total pressure = 7.76×10^{-10} mbar)

Speed

Digital speeds

Clocked output option (MHz)	Maximum speed (m/s)					
	DOP0004 5 µm	DOP0020 1 µm	DOP0040 0.5 µm	DOP0100 0.2 µm	DOP0200 0.1 µm	DOP0400 50 nm
50	10	10	10	6.48	3.24	1.62
40	10	10	10	5.40	2.70	1.35
25	10	10	8.10	3.24	1.62	0.810
20	10	10	6.75	2.70	1.35	0.675
12	10	9	4.50	1.80	0.900	0.450
10	10	8.10	4.05	1.62	0.810	0.405
08	10	6.48	3.24	1.29	0.648	0.324
06	10	4.50	2.25	0.90	0.450	0.225
04	10	3.37	1.68	0.67	0.338	0.169
01	4.2	0.84	0.42	0.16	0.084	0.042

Clocked output option (MHz)	Maximum speed (m/s)				
	DOP1000 20 nm	DOP2000 10 nm	DOP4000 5 nm	DOP10KD 2 nm	DOP20KD 1 nm
50	0.648	0.324	0.162	0.0654	0.032
40	0.540	0.270	0.135	0.054	0.027
25	0.324	0.162	0.081	0.032	0.016
20	0.270	0.135	0.068	0.027	0.013
12	0.180	0.090	0.045	0.018	0.009
10	0.162	0.081	0.041	0.016	0.0081
08	0.130	0.065	0.032	0.013	0.0065
06	0.090	0.045	0.023	0.009	0.0045
04	0.068	0.034	0.017	0.0068	0.0034
01	0.017	0.008	0.004	0.0017	0.0008

Analogue speeds

Analogue output (Ti0000 and DOP interfaces)

10 m/s (-3dB)

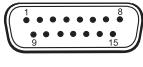
Angular speed

Linear to angular speed conversion.

Angular speed depends on ring diameter. Use the following equation to convert to rev/min:

$$\text{Angular speed (rev/min)} = \frac{V \times 1000 \times 60}{\pi D}$$

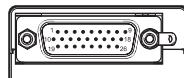
Where V = maximum linear speed (m/s) and D = external diameter of RESM20 ring (mm).


Output signals

NOTE: Only analogue sine and cosine outputs are functionally safe.

TONIC FS readhead output

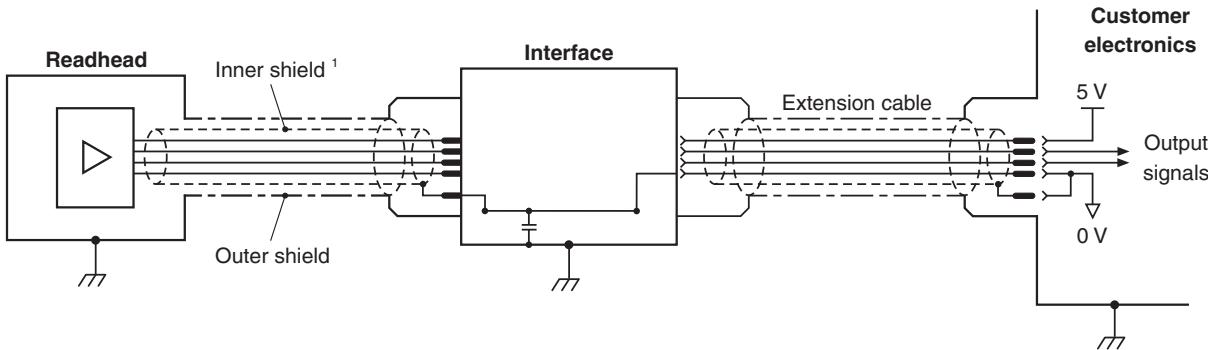
Function	Output type	Signal		Colour	
Power	-	5 V Power		Brown	
		0 V Power		White	
Incremental signals	Analogue	Cosine	V_1	+	
				Red	
		Sine	V_2	+	
				Yellow	
Reference mark	Analogue		V_0	+	
				Violet	
				-	
				Grey	
Limits	Open collector	V_p		Pink	
		V_q		Black	
Set-up	-	V_x		Clear	
Calibrate	-	CAL		Orange	
Shield	-	Inner shield ¹		Green/Yellow	
		Outer shield		Outer screen	


Ti0000 interface output

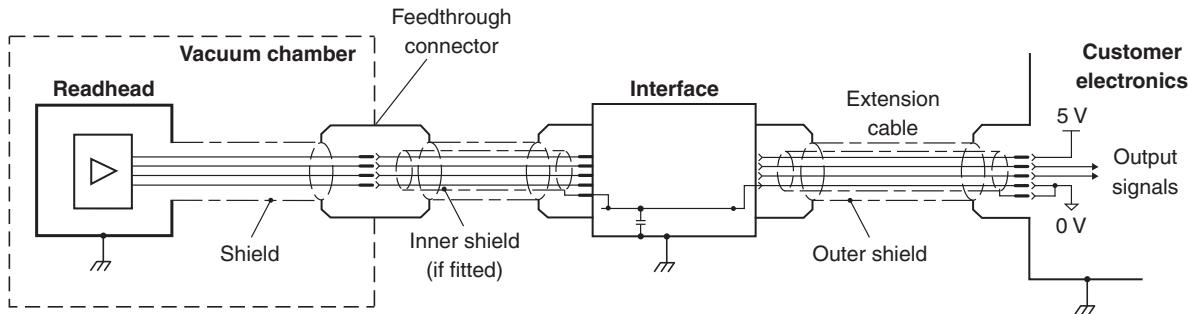
Function	Output type	Signal		Pin	
Power	-	5 V Power		4	
		5 V Sense		5	
		0 V Power		12	
		0 V Sense		13	
Incremental signals	Analogue	Cosine	V_1	+	
				9	
		Sine	V_2	-	
				1	
Reference mark	Analogue		V_0	+	
				10	
				-	
				2	
Limits	Open collector	V_p		3	
		V_q		11	
		V_x		7	
				8	
Set-up	-	V_x		6	
Calibrate	-	CAL		14	
Shield	-	Inner shield		Not connected	
		Outer shield		Case	
				 15-way D-type plug	

¹ Standard cable: The inner shield is connected to 0 V inside the Ti interface.
UHV cable: There is no inner shield on UHV cables.

DOP interface output

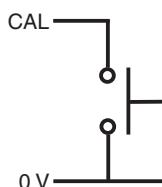

Function	Output type		Signal		Pin	
Power	-		5 V Power		26	
			5 V Sense		18	
			0 V Power		9	
			0 V Sense		8	
Incremental signals	RS422A digital		A	+	24	
				-	6	
			B	+	7	
				-	16	
	Analogue	Cosine	V_1	+	1	
				-	19	
		Sine	V_2	+	2	
				-	11	
Reference mark	RS422A digital		Z	+	15	
				-	23	
	Analogue		V_0	+	12	
				-	20	
Alarm	RS422A digital		E	+	25	
				-	17	
Limits	Open collector		P		4	
			Q		13	
Readhead set-up	-		X		10	
Shield	-		Inner shield		Not connected	
	-		Outer shield		Case	

26-way high-density D-type plug


Electrical connections

Grounding and shielding - standard TONiC FS system

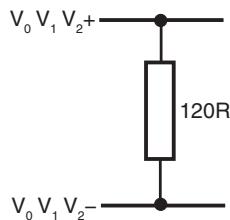
IMPORTANT: The outer shield must be connected to the machine earth (Field Ground). The inner shield must be connected to 0 V at receiving electronics only. Care should be taken to ensure that the inner and outer shields are insulated from each other. If the inner and outer shields are connected together, this will cause a short between 0 V and earth, which could cause electrical noise issues.


Grounding and shielding - Ultra-high vacuum (UHV) TONiC FS system

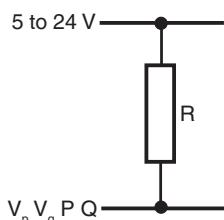
IMPORTANT: The outer shield should be connected to the machine earth (Field Ground). The inner shield should be connected to 0 V at receiving electronics only. Care should be taken to ensure that the inner and outer shields are insulated from each other. If the inner and outer shields are connected together, this will cause a short between 0 V and earth, which could cause electrical noise issues.

NOTE: For DOP interfaces the external earthing tag on the interface must be used when mounting the interface on a DIN rail.

Remote CAL operation

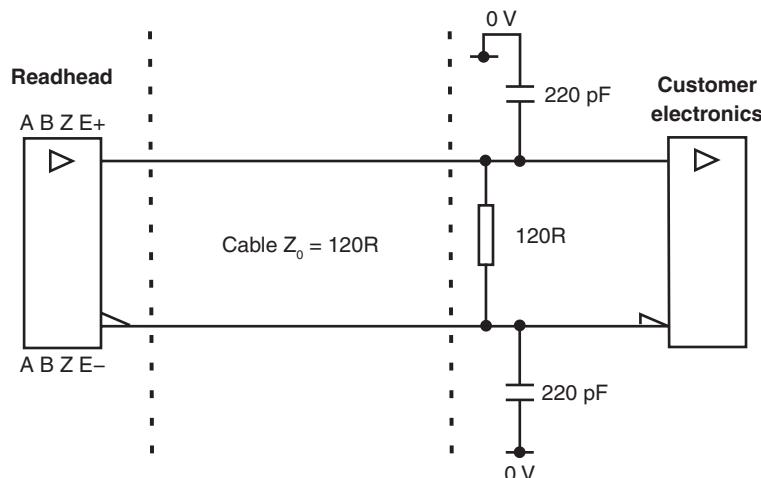

The Ti and DOP interfaces include a push-button switch to enable CAL/AGC features.

Remote operation of the CAL/AGC is possible via pin 14 of Ti0000 interfaces.


For applications where no interface is used, remote operation of CAL/AGC is essential.

Recommended signal terminations ¹

Analogue outputs



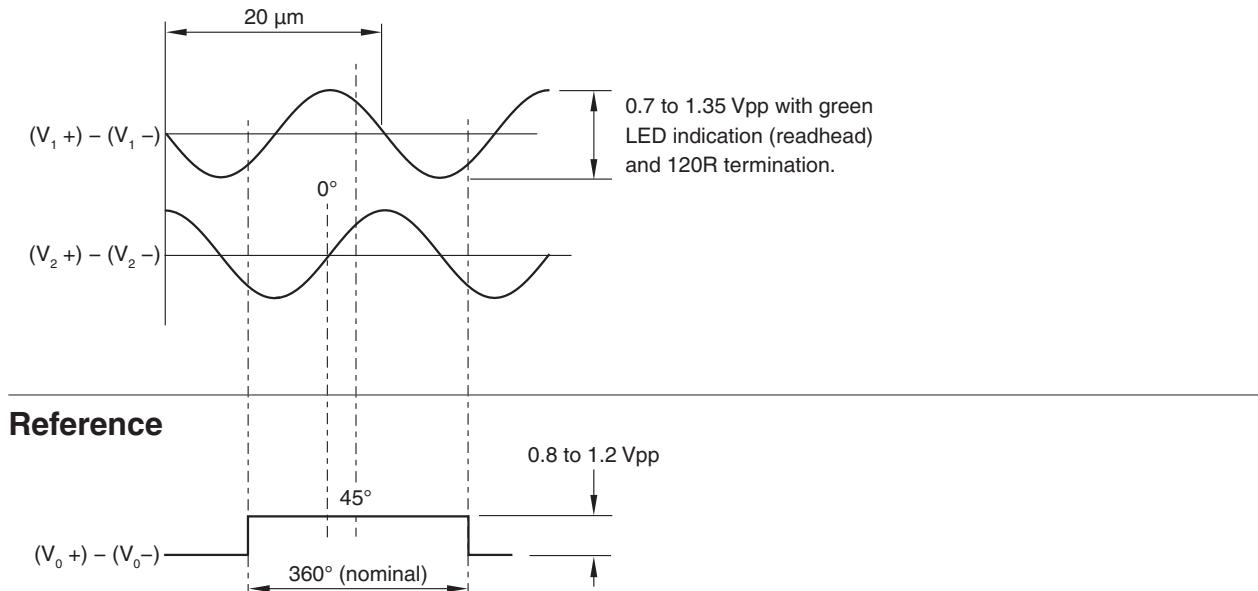
Limit outputs

NOTE: Select the resistor R so that the maximum current does not exceed 20 mA. Alternatively use a suitable relay or opto-isolator.

Digital outputs

Standard RS422A line receiver circuitry.

The capacitors are recommended for improved noise immunity.


¹ Only the analogue sine and cosine outputs are functionally safe.

Output specifications

Analogue output signals ¹

Incremental

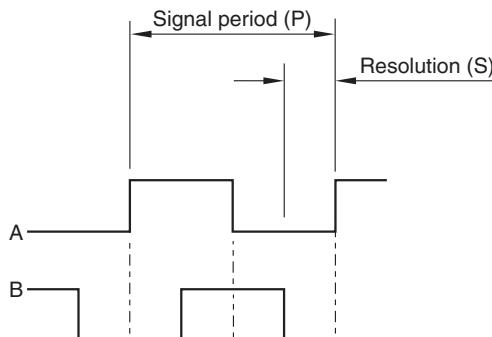
2 channels V_1 and V_2 differential sinusoids in quadrature (90° phase shifted)

The reference output is bi-directionally repeatable.²

The differential pulse V_0 is centred on 45° .

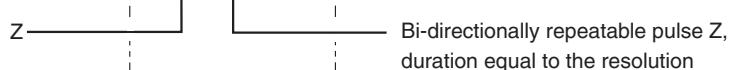
NOTE: The Ti0000 differential signals are centred on $\sim 1.65 \text{ V}$ and the DOP interface differential signals are centred on 2.5 V .

¹ Only the analogue sine and cosine outputs are functionally safe.


² Only the calibrated reference mark is bi-directionally repeatable.

Digital output signals (DOP interface only)¹

Form – Square wave differential line driver to EIA RS422A (except limits P and Q)


Incremental²

2 channels A and B in quadrature (90° phase shifted)

Model	P (μm)	S (μm)
DOP0004	20	5
DOP0020	4	1
DOP0040	2	0.5
DOP0100	0.8	0.2
DOP0200	0.4	0.1
DOP0400	0.2	0.05
DOP1000	0.08	0.02
DOP2000	0.04	0.01
DOP4000	0.02	0.005
DOP10KD	0.008	0.002
DOP20KD	0.004	0.001

Reference²

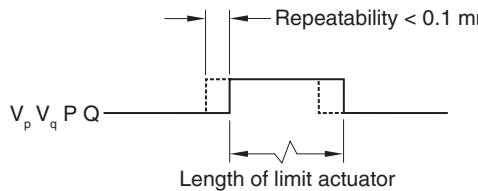
Bi-directionally repeatable pulse Z,
duration equal to the resolution

Wide reference²

Bi-directionally repeatable pulse Z,
duration equal to the signal period

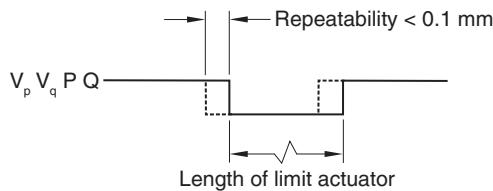
NOTE: Select 'standard' or 'wide' reference at time of ordering, to match the requirements of the controller being used. Wide reference mark not available on DOP0004

¹ Only the analogue sine and cosine outputs are functionally safe.

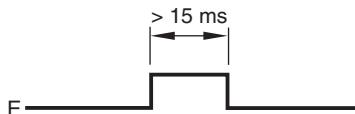

² For clarity, the inverse signals are not shown.

Limits

Open collector output, asynchronous pulse


Active high

- Ti0000 interface
- DOP interface (dependent on reference mark option selected; see page 24)


or active low

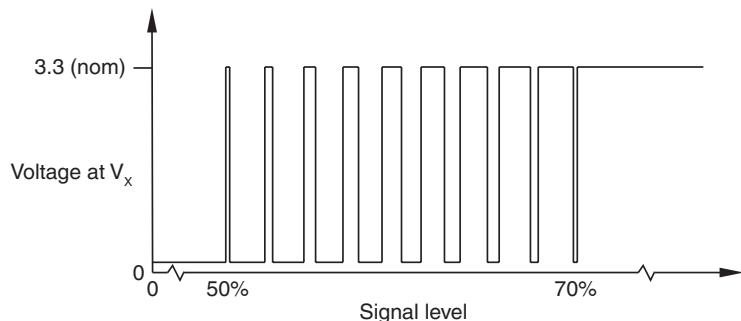
- TONiC FS readhead
- DOP interface (dependent on reference mark option selected; see page 24)

Alarm (DOP interface only)

Line driven¹ (asynchronous pulse)

The line driven alarm is asserted when:

- The signal amplitude is < 20% or > 135%
- The readhead speed is too high for reliable operation

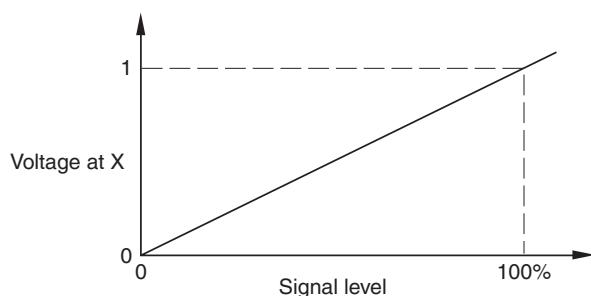

or 3-state alarm

Differentially transmitted signals are forced open circuit for > 15 ms when the alarm conditions are valid.

¹ For clarity, the inverse signals are not shown.

Set-up signal ¹

Ti0000 interface



Between 50% and 70% the signal level V_x is a duty cycle.

Time spent at 3.3 V increases with incremental signal level.

At $> 70\%$ the signal level V_x is nominal 3.3 V.

DOP interface

The set-up signal voltage is proportional to the incremental signal amplitude.

¹ The set-up signals as shown are not present during the calibration routine.

T3xxx linear readhead part numbers

Compatible with RTLC20-S, RTLC20/FASTRACK, RSLx20, or RELx20 scale

T3 0 3 0 - 15 A

Series —

T3 = TONiC FS linear readhead

Readhead type —

0 = Standard (select 'cable termination' A)

6 = Ultra-high vacuum (select 'cable termination' M)

Scale type compatibility —

1 = RSLx20 / RELx20

3 = RTLC20-S / RTLC20

Reference mark —

0 = Customer selectable reference mark

1 = All reference marks are output ¹

Cable length —

02 = 0.2 metres (standard 'readhead type' only)

05 = 0.5 metres (standard 'readhead type' only)

10 = 1.0 metres

15 = 1.5 metres

20 = 2.0 metres (standard 'readhead type' only)

30 = 3.0 metres

50 = 5.0 metres

60 = 6.0 metres

99 = 10.0 metres

Cable termination —

A = Standard mini connector to mate with Ti or DOP interfaces

M = Vacuum cable with mini connector to mate with Ti or DOP interfaces

Valid system configurations can be checked at www.renishaw.com/epc.

¹ Only the calibrated reference mark is bi-directionally repeatable.

T4xxx rotary readhead part numbers

Compatible with RESM20 rings

T4 0 0 1 - 15 A

Series _____

T4 = TONiC FS rotary readhead

Readhead type _____

0 = Standard (select 'cable termination' A)

6 = Ultra-high vacuum (select 'cable termination' M)

Ring diameter _____

0 = RESM20 > Ø135 mm

1 = RESM20 Ø60 mm to Ø135 mm

2 = RESM20 < Ø60 mm

Reference mark _____

1 = All reference marks are output

Cable length _____

02 = 0.2 metres (standard 'readhead type' only)

05 = 0.5 metres (standard 'readhead type' only)

10 = 1.0 metres

15 = 1.5 metres

20 = 2.0 metres (standard 'readhead type' only)

30 = 3.0 metres

50 = 5.0 metres

60 = 6.0 metres

99 = 10.0 metres

Cable termination _____

A = Standard mini connector to mate with Ti or DOP interfaces

M = Vacuum cable with mini connector to mate with Ti or DOP interfaces

Valid system configurations can be checked at www.renishaw.com/epc.

Ti interface part number

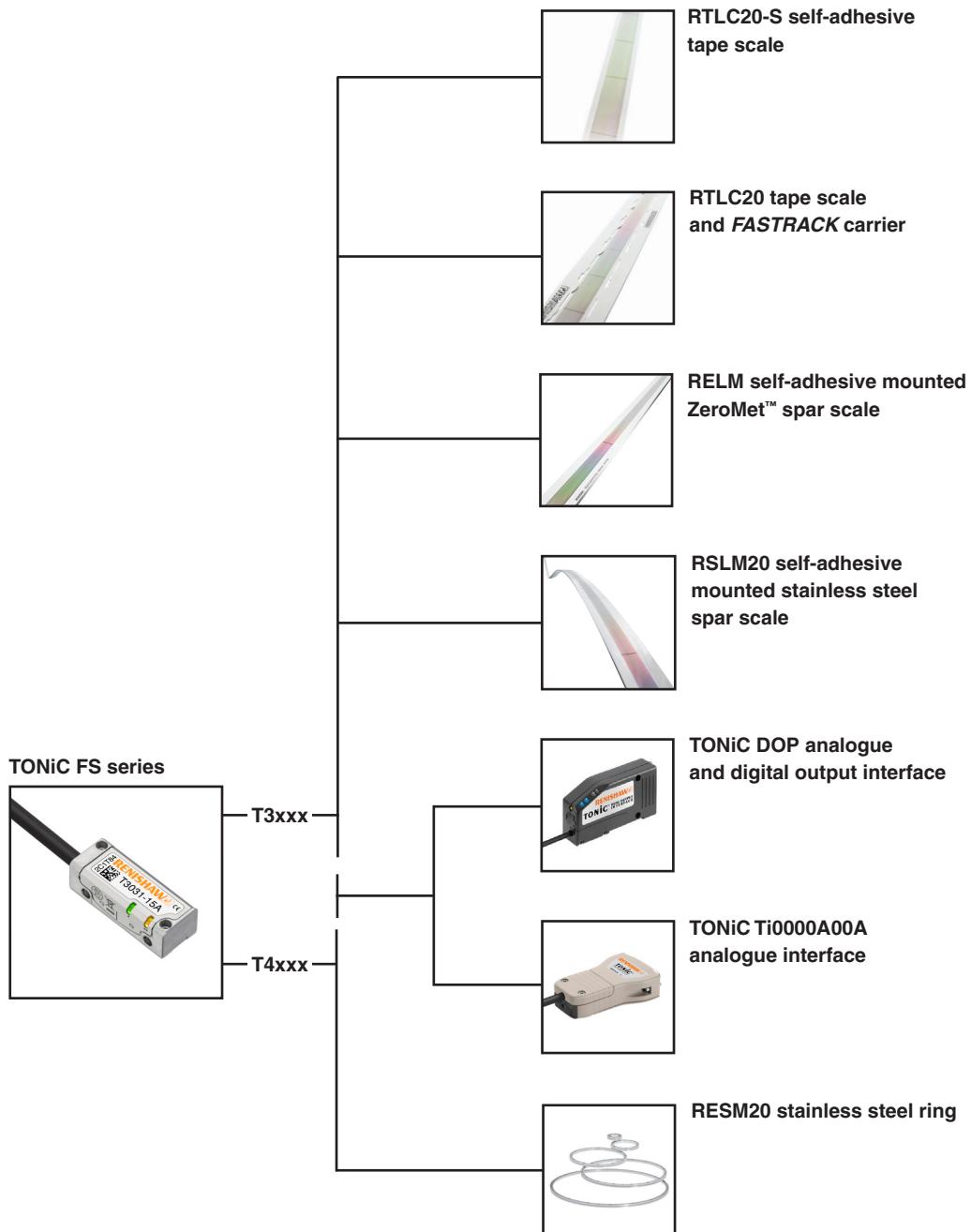
Compatible with all TONiC FS readheads

Ti0000A00A

DOP interface part numbers

Compatible with all TONiC FS readheads

DOP 0200 A 20 A		
Series _____		
DOP = TONiC dual output interface		
Interpolation factor / resolution¹ _____		
0004 = 5 µm	0200 = 0.1 µm	4000 = 5 nm
0020 = 1 µm	0400 = 50 nm	10KD = 2 nm
0040 = 0.5 µm	1000 = 20 nm	20KD = 1 nm
0100 = 0.2 µm	2000 = 10 nm	
Alarm format and conditions _____		
A = Line driven E output; all alarms		
B = Line driven E output; low signal and high signal alarms only		
E = 3 state; all alarms		
F = 3 state; low signal and high signal alarms only		
Clock frequency _____		
50 = 50 MHz	12 = 12 MHz	04 = 4 MHz
40 = 40 MHz	10 = 10 MHz	01 = 1 MHz
25 = 25 MHz	08 = 8 MHz	
20 = 20 MHz	06 = 6 MHz	
Reference mark _____		
A = P / Q limits - 'Active high', standard reference mark		
B = P / Q limits - 'Active low', standard reference mark		
C = P / Q limits - 'Active high', wide reference mark ²		
D = P / Q limits - 'Active low', wide reference mark ²		


NOTE: For TONiC FS UHV systems, only the readhead is UHV compatible. The Ti and DOP interfaces must be kept outside of the vacuum chamber.

Valid system configurations can be checked at www.renishaw.com/epc.

¹ Contact Renishaw for other interpolation factors.

² A wide reference mark is not available with DOP0004 (5 µm) interfaces.

TONiC FS compatible products

www.renishaw.com/contact

#renishaw

 +44 (0) 1453 524524

 uk@renishaw.com

© 2019–2020 Renishaw plc. All rights reserved. This document may not be copied or reproduced in whole or in part, or transferred to any other media or language by any means, without the prior written permission of Renishaw.

RENNISHAW® and the probe symbol are registered trade marks of Renishaw plc. Renishaw product names, designations and the mark 'apply innovation' are trade marks of Renishaw plc or its subsidiaries. Other brand, product or company names are trade marks of their respective owners.

WHILE CONSIDERABLE EFFORT WAS MADE TO VERIFY THE ACCURACY OF THIS DOCUMENT AT PUBLICATION, ALL WARRANTIES, CONDITIONS, REPRESENTATIONS AND LIABILITY, HOWSOEVER ARISING, ARE EXCLUDED TO THE EXTENT PERMITTED BY LAW. RENISHAW RESERVES THE RIGHT TO MAKE CHANGES TO THIS DOCUMENT AND TO THE EQUIPMENT, AND/OR SOFTWARE AND THE SPECIFICATION DESCRIBED HEREIN WITHOUT OBLIGATION TO PROVIDE NOTICE OF SUCH CHANGES.

Renishaw plc. Registered in England and Wales. Company no: 1106260. Registered office: New Mills, Wotton-under-Edge, Glos, GL12 8JR, UK.

Part no.: L-9517-9878-02-B

Issued: 01.2026